Upload Avatar (500 x 500)
徐山
xushan@njau.edu.cn
英语, 中文
江苏
南京农业大学
academy for adyanced interdisciplinary studies
  • 2015.9-2021.6: 北京师范大学,地图学与地理信息系统专业,理学博士
  • 2019.1-2020.1: 赫尔辛基大学,联合培养博士生
  • 2008.9-2012.6: 华中农业大学,地理信息系统专业,理学学士
植被定量遥感与农作物生长监测
基于光谱的农作物生理表型提取
  • Exploring the Sensitivity of Solar-Induced Chlorophyll Fluorescence at Different Wavelengths in Response to Drought, Xu, S., Liu, Z., Han, S., Chen, Z., He, X., Zhao, H., & Ren, S., 2023
  • Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop, Xu, S., Atherton, J., Riikonen, A., Zhang, C., Oivukkamäki, J., MacArthur, A., ... & Porcar-Castell, A., 2021
  • On the estimation of the leaf angle distribution from drone based photogrammetry, Xu, S., Zaidan, M. A., Honkavaara, E., Hakala, T., Viljanen, N., Porcar-Castell, A., ... & Atherton, J., 2020
  • Diurnal response of sun-induced fluorescence and PRI to water stress in maize using a near-surface remote sensing platform, Xu, S., Liu, Z., Zhao, L., Zhao, H., & Ren, S., 2018
  • Proximal and remote sensing in plant phenomics: Twenty years of progress, challenges and perspectives, Tao, H., Xu, S., Tian, Y., Li, Z., Ge, Y., Zhang, J., ... & Jin, S., 2022
  • Retrieving the diurnal FPAR of a maize canopy from the jointing stage to the tasseling stage with vegetation indices under different water stresses and light conditions, Zhao, L., Liu, Z., Xu, S., He, X., Ni, Z., Zhao, H., & Ren, S., 2018
  • An automated comparative observation system for sun-induced chlorophyll fluorescence of vegetation canopies, Zhou, X., Liu, Z., Xu, S., Zhang, W., & Wu, J., 2016
  • Is satellite Sun-Induced Chlorophyll Fluorescence more indicative than vegetation indices under drought condition?, Cao, J., An, Q., Zhang, X., Xu, S., Si, T., & Niyogi, D., 2021
  • Using High-Frequency PAR Measurements to Assess the Quality of the SIF Derived from Continuous Field Observations, Han, S., Liu, Z., Chen, Z., Jiang, H., Xu, S., Zhao, H., & Ren, S., 2022
  • Using the diurnal variation characteristics of effective quantum yield of PSII photochemistry for drought stress detection in maize, Chen, Z., Liu, Z., Han, S., Jiang, H., Xu, S., Zhao, H., & Ren, S., 2022
  • Simultaneous prediction of wheat yield and grain protein content using multitask deep learning from time-series proximal sensing, Sun, Z., Li, Q., Jin, S., Song, Y., Xu, S., Wang, X., ... & Jiang, D., 2022
  • What does the NDVI really tell us about crops? Insight from proximal spectral field sensors, Atherton, J., Zhang, C., Oivukkamäki, J., Kulmala, L., Xu, S., Hakala, T., ... & Porcar-Castell, A., 2022
  • Deciphering the contributions of spectral and structural data to wheat yield estimation from proximal sensing, Li, Q., Jin, S., Zang, J., Wang, X., Sun, Z., Li, Z., Xu, S., Ma, Q., … & Jiang, D., 2022
  • Assessing the response of satellite sun-induced chlorophyll fluorescence and MODIS vegetation products to soil moisture from 2010 to 2017: a case in Yunnan Province of China, Ni, Z., Huo, H., Tang, S., Li, Z. L., Liu, Z., Xu, S., & Chen, B., 2019
遥感 植被 作物生长 监测 光谱分析 表型提取 生理 定量 农业 传感技术

联系我们

欢迎与我们交流!
* Required
* Required
* Required
* Invalid email address
提交此表单,即表示您同意 IoT ONE 可以与您联系并分享洞察和营销信息。
不,谢谢,我不想收到来自 IoT ONE 的任何营销电子邮件。
提交

感谢您的信息!
我们会很快与你取得联系。