Technology Category
- Analytics & Modeling - Machine Learning
- Platform as a Service (PaaS) - Application Development Platforms
Applicable Industries
- Education
- Retail
Applicable Functions
- Procurement
Use Cases
- Predictive Maintenance
- Retail Store Automation
Services
- Data Science Services
About The Customer
Barracuda Networks is a global leader in security, application delivery, and data protection solutions. The company is dedicated to detecting phishing attacks and providing comprehensive email security protection to its customers. They work on top of Microsoft Office 365 and analyze the email stream for any possible threats. One of the key products that Barracuda offers is impersonation protection, which is focused on deterring targeted phishing attacks. The company serves thousands of customers, protecting millions of mailboxes from tens of thousands of malicious emails daily.
The Challenge
Barracuda Networks, a global leader in security, application delivery, and data protection solutions, was faced with the challenge of handling sophisticated phishing emails. The company had built a powerful artificial intelligence engine that uses behavioral analysis to detect attacks and keep malicious actors at bay. However, the sophistication of attackers in creating malicious emails posed a significant challenge. The company needed to assess and identify malicious messages to protect their customers. Additionally, Barracuda Networks offered impersonation protection, a service that prevents malicious actors from disguising their messages as coming from an official source. However, these targeted phishing attacks required the attacker to have personal details about the recipient, making them harder to detect and block. Furthermore, Barracuda faced difficulties with feature engineering. They needed to utilize the right data and do feature engineering on top of that data, which included email text and statistical data. Before the Databricks integration, building features was more difficult with the labeled data spread over multiple months, particularly with the statistical features. Also, keeping track of the features when the data set grew in size was challenging.
The Solution
Barracuda Networks leveraged machine learning on the Databricks Lakehouse Platform, specifically using the Databricks Feature Store and Managed MLflow, to improve the ML process and deploy better quality models faster. The Databricks Feature Store served as the single repository for all of the features used by the Barracuda team. It allowed them to create and maintain statistical features that are constantly updated with fresh batches of incoming emails. The Feature Store is built on top of Delta, which eliminated extra processing required to convert labeled data to features, and the features remained current. Features were kept in an offline repository, and snapshots of this information were then released online for use in online inferencing. By integrating Databricks Feature Store with MLflow, these features could be readily called from the models in MLflow, and the model could obtain the feature concurrently with the feature retrieval when the e-mail comes through for inferencing. With MLflow, the team could move all the code inside the model, making it simpler and faster to infer. This capability greatly reduced the time the team spent developing ML models.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.
Case Study
Improving Production Line Efficiency with Ethernet Micro RTU Controller
Moxa was asked to provide a connectivity solution for one of the world's leading cosmetics companies. This multinational corporation, with retail presence in 130 countries, 23 global braches, and over 66,000 employees, sought to improve the efficiency of their production process by migrating from manual monitoring to an automatic productivity monitoring system. The production line was being monitored by ABB Real-TPI, a factory information system that offers data collection and analysis to improve plant efficiency. Due to software limitations, the customer needed an OPC server and a corresponding I/O solution to collect data from additional sensor devices for the Real-TPI system. The goal is to enable the factory information system to more thoroughly collect data from every corner of the production line. This will improve its ability to measure Overall Equipment Effectiveness (OEE) and translate into increased production efficiencies. System Requirements • Instant status updates while still consuming minimal bandwidth to relieve strain on limited factory networks • Interoperable with ABB Real-TPI • Small form factor appropriate for deployment where space is scarce • Remote software management and configuration to simplify operations
Case Study
Digital Retail Security Solutions
Sennco wanted to help its retail customers increase sales and profits by developing an innovative alarm system as opposed to conventional connected alarms that are permanently tethered to display products. These traditional security systems were cumbersome and intrusive to the customer shopping experience. Additionally, they provided no useful data or analytics.
Case Study
How Sirqul’s IoT Platform is Crafting Carrefour’s New In-Store Experiences
Carrefour Taiwan’s goal is to be completely digital by end of 2018. Out-dated manual methods for analysis and assumptions limited Carrefour’s ability to change the customer experience and were void of real-time decision-making capabilities. Rather than relying solely on sales data, assumptions, and disparate systems, Carrefour Taiwan’s CEO led an initiative to find a connected IoT solution that could give the team the ability to make real-time changes and more informed decisions. Prior to implementing, Carrefour struggled to address their conversion rates and did not have the proper insights into the customer decision-making process nor how to make an immediate impact without losing customer confidence.
Case Study
Ensures Cold Milk in Your Supermarket
As of 2014, AK-Centralen has over 1,500 Danish supermarkets equipped, and utilizes 16 operators, and is open 24 hours a day, 365 days a year. AK-Centralen needed the ability to monitor the cooling alarms from around the country, 24 hours a day, 365 days a year. Each and every time the door to a milk cooler or a freezer does not close properly, an alarm goes off on a computer screen in a control building in southwestern Odense. This type of alarm will go off approximately 140,000 times per year, equating to roughly 400 alarms in a 24-hour period. Should an alarm go off, then there is only a limited amount of time to act before dairy products or frozen pizza must be disposed of, and this type of waste can quickly start to cost a supermarket a great deal of money.
Case Study
Supermarket Energy Savings
The client had previously deployed a one-meter-per-store monitoring program. Given the manner in which energy consumption changes with external temperature, hour of the day, day of week and month of year, a single meter solution lacked the ability to detect the difference between a true problem and a changing store environment. Most importantly, a single meter solution could never identify root cause of energy consumption changes. This approach never reduced the number of truck-rolls or man-hours required to find and resolve issues.