Customer Company Size
SME
Region
- Europe
Country
- France
Product
- PriceMoov
- Dataiku Data Science Studio (DSS)
Tech Stack
- GMM
- DBSCAN Time Series Forecasting
- Random Forest
Implementation Scale
- Enterprise-wide Deployment
Impact Metrics
- Productivity Improvements
- Revenue Growth
Technology Category
- Analytics & Modeling - Predictive Analytics
Applicable Industries
- Software
Applicable Functions
- Sales & Marketing
Use Cases
- Predictive Replenishment
Services
- Data Science Services
About The Customer
PriceMoov is a Plug and Play Yield Management solution. Founded in 2016, Pricemoov has been experiencing strong growth. Some of its users are car rentals services, but also airline companies and event organizers. The company delivers optimal pricing suggestions and solutions to its customers by weighing the intrinsic value of the item, its seasonality, and the attributes of the customer himself through detailed segmentation. To do so, Pricemoov collects datasets from its customers that are updated daily through partitioning.
The Challenge
PriceMoov, a service that delivers optimal pricing suggestions and solutions to its customers, was facing a challenge with data originating from old SI systems, Oracle, or MySql. The data was dirty and required a fulltime developer to perform long ETL steps in PHP for cleaning. Once cleaned, the datasets were painfully entered into a model, as they were custom-built pipelines. And once finished, the replication and deployment process for the next customer was taking weeks. This long and arduous data preparation process was causing stale pricing recommendations.
The Solution
PriceMoov discovered Dataiku Data Science Studio (DSS), which transformed their business by allowing them to run proof-of-concepts for potential customers on short notice thanks to significantly faster data cleaning processes and the ability to quickly replicate existing work. The data department at Pricemoov now uses Dataiku to replicate existing workflows to get proof-of-concepts for potential customers up and running quickly, significantly speed up data cleaning and exporting, and better define a specific price per customer that evolves over time by melding data indicating demand with customers’ willingness to pay.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.
Case Study
Infosys achieves a 5–7 percent effort reduction across projects
Infosys, a global leader in consulting, technology, and outsourcing solutions, was facing significant challenges in application development and maintenance due to its distributed teams, changing business priorities and the need to stay in alignment with customer needs. The company used a mix of open source, home-grown and third-party applications to support application development projects. However, challenges resulting from distributed teams using manual processes increased as the company grew. It became more and more important for Infosys to execute its projects efficiently, so they could improve quality, reduce defects and minimize delays.
Case Study
Arctic Wolf Envelops Teamworks with 24x7 Cybersecurity Protection and Comprehensive Visibility
Teamworks, a leading athlete engagement platform, faced rising cyberthreats and needed enhanced visibility into its network, servers, and laptops. With software developers connecting from all over the world, the company sought to improve its security posture and position itself for future growth. The company had a secure platform but recognized the need for a more proactive solution to identify gaps within its technology infrastructure. Data exfiltration and malicious access were top concerns, prompting the need for a comprehensive security upgrade.
Case Study
Sawback IT and Datto Save Client From a Costly Mistake
Ballistic Echo, a software development house, faced a critical challenge when human error led to the deletion of thousands of lines of unique code. This incident occurred before the code was pushed to source control, resulting in significant loss of time, revenue, and work. The previous file-level backup solution they used was slow and inefficient, making it nearly impossible to manually recreate the lost work. The need for a more reliable and efficient business continuity solution became evident to avoid such disasters in the future.
Case Study
Opal Helps Customers Shine Thanks to Datto
SP Flooring & Design Center faced a ransomware attack that encrypted and locked their files. The attack was initiated through a compromised service account set up by an outside vendor. The ransomware infection was isolated quickly, but there was a concern about the extent of the data at risk. The company had backups in place but was unsure of how much information was compromised. The situation required immediate action to prevent further damage and restore the affected data.
Case Study
Zapier Aggregates Multiple Analytics in a Single Dashboard with the New Relic Platform
Zapier, a company that enables non-technical users to push data between hundreds of web applications, was facing a challenge in automating and provisioning servers for optimal performance. The company's environment consisted of 50 Linux servers on the Amazon Elastic Compute Cloud (EC2), a Django application split across several servers, and a backend consisting of a dynamic number of celery task workers fed by messages published to a RabbitMQ cluster. They also maintained a number of internal web services on nginx in front of Gunicorn and Node.js processes. Redis handled simple key and value stores, with logging handled by Graylog2 and ElasticSearch. However, they realized that no level of automation would be sufficient without an effective monitoring solution in place. They needed a tool that could provide immediate alerts when something was breaking and could be easily implemented into their environment.
Case Study
Pipeline Insight Case Study: YARCDATA
YarcData faced challenges in determining the conversion rates of prospects into customers through various marketing efforts and identifying the source of its leads. They wanted to know the percentage of opportunities in the sales pipeline that came from different marketing events, web downloads, or self-sourced sales opportunities. Additionally, they needed the ability to drill down into the data to guide where to allocate more marketing dollars based on the success of previous efforts. Previously, YarcData relied heavily on spreadsheets and Salesforce.com reports, which made it difficult to extract the exact information they needed. This reliance on spreadsheets represented about 70% of their data presentation.