Customer Company Size
Large Corporate
Region
- America
Country
- United States
Product
- AtScale’s semantic layer platform
- Google Big Query
- Excel
- Tableau
Tech Stack
- Google BigQuery
- SQL Server Analysis Services (SSAS)
- Teradata
- Hadoop
Implementation Scale
- Enterprise-wide Deployment
Impact Metrics
- Cost Savings
- Productivity Improvements
Technology Category
- Infrastructure as a Service (IaaS) - Cloud Computing
- Analytics & Modeling - Big Data Analytics
Applicable Industries
- Retail
- E-Commerce
Applicable Functions
- Business Operation
Services
- Cloud Planning, Design & Implementation Services
- Data Science Services
About The Customer
The customer is a Fortune 50 retailer that operates on a large scale. They have thousands of internal and external analytics consumers who rely on their data for various purposes. The retailer has a diverse set of legacy platforms, including SQL Server Analysis Services (SSAS), Teradata, and Hadoop, which were proving to be expensive and unable to scale at the rate of their business. The retailer's primary goal was to modernize their analytics infrastructure to increase the flow of data-driven insights that could lead to improved margins, optimization of product mix, and better inventory management. They needed a solution that could scale, support security and access control policies, and support their migration from on-premise legacy data platforms to a cloud data warehouse.
The Challenge
A Fortune 50 retailer launched an initiative to modernize their analytics infrastructure with the primary goal of increasing the flow of data-driven insights that could lead to improved margins, optimization of product mix and better inventory management. Their challenge was to enable better analytics at scale while ensuring efficiency and consistency across a broad audience of data consumers. With thousands of users performing analytics using a diverse set of legacy platforms, including SQL Server Analysis Services (SSAS), Teradata, and Hadoop, the existing infrastructure was expensive and could not scale at the rate of their business. To empower their users, the data team needed a scalable semantic layer solution that could serve the needs of internal users as well as suppliers that rely on a shared view of inventory. The solution needed to scale, needed to support security and access control policies, and needed to support the organization’s migration from on-premise legacy data platforms to a cloud data warehouse.
The Solution
The retailer partnered with AtScale to replace traditional SQL Server Analysis Services (SSAS) OLAP instances. The AtScale semantic layer delivered the analytics performance of SSAS without the complex data engineering and the need to extract and transform data to maintain traditional OLAP “cubes.” This initial implementation was done with on-premise Hadoop data. As the organization transitioned to Google BigQuery, they were able to leverage AtScale’s virtualization-based approach to seamlessly transition analytics with no interruption to the business. Within a single weekend, the data team was able to redirect existing AtScale models to the new cloud data repository, enabling existing reports, dashboards, and applications that were based on AtScale to continue operating with no changes.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.

Case Study
Improving Production Line Efficiency with Ethernet Micro RTU Controller
Moxa was asked to provide a connectivity solution for one of the world's leading cosmetics companies. This multinational corporation, with retail presence in 130 countries, 23 global braches, and over 66,000 employees, sought to improve the efficiency of their production process by migrating from manual monitoring to an automatic productivity monitoring system. The production line was being monitored by ABB Real-TPI, a factory information system that offers data collection and analysis to improve plant efficiency. Due to software limitations, the customer needed an OPC server and a corresponding I/O solution to collect data from additional sensor devices for the Real-TPI system. The goal is to enable the factory information system to more thoroughly collect data from every corner of the production line. This will improve its ability to measure Overall Equipment Effectiveness (OEE) and translate into increased production efficiencies. System Requirements • Instant status updates while still consuming minimal bandwidth to relieve strain on limited factory networks • Interoperable with ABB Real-TPI • Small form factor appropriate for deployment where space is scarce • Remote software management and configuration to simplify operations

Case Study
Digital Retail Security Solutions
Sennco wanted to help its retail customers increase sales and profits by developing an innovative alarm system as opposed to conventional connected alarms that are permanently tethered to display products. These traditional security systems were cumbersome and intrusive to the customer shopping experience. Additionally, they provided no useful data or analytics.

Case Study
How Sirqul’s IoT Platform is Crafting Carrefour’s New In-Store Experiences
Carrefour Taiwan’s goal is to be completely digital by end of 2018. Out-dated manual methods for analysis and assumptions limited Carrefour’s ability to change the customer experience and were void of real-time decision-making capabilities. Rather than relying solely on sales data, assumptions, and disparate systems, Carrefour Taiwan’s CEO led an initiative to find a connected IoT solution that could give the team the ability to make real-time changes and more informed decisions. Prior to implementing, Carrefour struggled to address their conversion rates and did not have the proper insights into the customer decision-making process nor how to make an immediate impact without losing customer confidence.

Case Study
Ensures Cold Milk in Your Supermarket
As of 2014, AK-Centralen has over 1,500 Danish supermarkets equipped, and utilizes 16 operators, and is open 24 hours a day, 365 days a year. AK-Centralen needed the ability to monitor the cooling alarms from around the country, 24 hours a day, 365 days a year. Each and every time the door to a milk cooler or a freezer does not close properly, an alarm goes off on a computer screen in a control building in southwestern Odense. This type of alarm will go off approximately 140,000 times per year, equating to roughly 400 alarms in a 24-hour period. Should an alarm go off, then there is only a limited amount of time to act before dairy products or frozen pizza must be disposed of, and this type of waste can quickly start to cost a supermarket a great deal of money.

Case Study
Supermarket Energy Savings
The client had previously deployed a one-meter-per-store monitoring program. Given the manner in which energy consumption changes with external temperature, hour of the day, day of week and month of year, a single meter solution lacked the ability to detect the difference between a true problem and a changing store environment. Most importantly, a single meter solution could never identify root cause of energy consumption changes. This approach never reduced the number of truck-rolls or man-hours required to find and resolve issues.