Technology Category
- Platform as a Service (PaaS) - Application Development Platforms
- Robots - Parallel Robots
Applicable Industries
- Buildings
- Cement
Applicable Functions
- Quality Assurance
- Warehouse & Inventory Management
Use Cases
- Building Automation & Control
- Time Sensitive Networking
Services
- Testing & Certification
About The Customer
Explorium is a technology company that enables organizations to find the right data, build predictive models, and make informed business decisions. It integrates its customers' data with the world's most reliable sources, creating a powerful platform built on top of these data sources. The company combines these two assets into a valuable product. Explorium’s customers rely on the platform to enrich their existing business data according to their specific needs. The company's platform determines the characteristics of the data and identifies the potential enrichments it can make. Customers who upload massive data sets can see their results in a few hours, while customers who upload smaller data sets can see immediate enrichment.
The Challenge
Explorium, a company that integrates organizations' data with the world's most reliable sources for predictive modeling and informed business decisions, was facing a challenge. The company was seeking to minimize data latency and free its data engineers from the task of building ELT pipelines. Explorium's platform determines the characteristics of the data and identifies potential enrichments it can make. However, the company was struggling with loading the right data quickly, regardless of the technical challenges it faced on the back end. The company was using Amazon EMR to run its ELT pipelines but realized its data engineers were spending too much time building these pipelines. This was slowing down the release of new data products and the onboarding of new data sets to its platform.
The Solution
To overcome these challenges, Explorium implemented Databricks Lakehouse Platform and dbt. Databricks offered auto-scaling features and sophisticated libraries for Delta tables, which freed the company’s engineers from optimizing tables and checking file sizes. These tasks are automated in Databricks, which saved time for engineers and allowed them to concentrate on building infrastructure. Explorium now adheres to the medallion architecture, which describes three data layers of different quality that are to be stored in the lakehouse. To load raw data into the bronze layer, Explorium uses Databricks Auto Loader. To load validated data into the silver layer, the company built a transformation in SQL. For enriched data that belongs in the gold layer, Explorium extracts data from Delta Lake tables and ingests it into a warehouse or database. The Explorium platform will then retrieve data directly from this database or warehouse and serve it up to customers. dbt provides testing capabilities while eliminating the need to get data engineers involved to help with cluster definitions and sizes, permissions to connect to AWS resources, and other complex needs.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.
Case Study
System 800xA at Indian Cement Plants
Chettinad Cement recognized that further efficiencies could be achieved in its cement manufacturing process. It looked to investing in comprehensive operational and control technologies to manage and derive productivity and energy efficiency gains from the assets on Line 2, their second plant in India.
Case Study
Energy Saving & Power Monitoring System
Recently a university in Taiwan was experiencing dramatic power usage increases due to its growing number of campus buildings and students. Aiming to analyze their power consumption and increase their power efficiency across 52 buildings, the university wanted to build a power management system utilizing web-based hardware and software. With these goals in mind, they contacted Advantech to help them develop their system and provide them with the means to save energy in the years to come.
Case Study
Intelligent Building Automation System and Energy Saving Solution
One of the most difficult problems facing the world is conserving energy in buildings. However, it is not easy to have a cost-effective solution to reduce energy usage in a building. One solution for saving energy is to implement an intelligent building automation system (BAS) which can be controlled according to its schedule. In Indonesia a large university with a five floor building and 22 classrooms wanted to save the amount of energy being used.
Case Study
Powering Smart Home Automation solutions with IoT for Energy conservation
Many industry leaders that offer Smart Energy Management products & solutions face challenges including:How to build a scalable platform that can automatically scale-up to on-board ‘n’ number of Smart home devicesData security, solution availability, and reliability are the other critical factors to deal withHow to create a robust common IoT platform that handles any kind of smart devicesHow to enable data management capabilities that would help in intelligent decision-making
Case Study
Protecting a Stadium from Hazardous Materials Using IoT2cell's Mobility Platform
There was a need for higher security at the AT&T Stadium during the NFL draft. There was a need to ensure that nuclear radiation material was not smuggled inside the stadium. Hazmat materials could often be missed in a standard checkpoint when gaining entry into a stadium.