Customer Company Size
Large Corporate
Region
- Europe
Country
- Finland
- Norway
- Poland
- Sweden
Product
- Luminate Retail
Tech Stack
- Artificial Intelligence
- Machine Learning
Implementation Scale
- Enterprise-wide Deployment
Impact Metrics
- Productivity Improvements
Technology Category
- Analytics & Modeling - Machine Learning
Applicable Industries
- Retail
Applicable Functions
- Sales & Marketing
Use Cases
- Inventory Management
- Demand Planning & Forecasting
Services
- Software Design & Engineering Services
- System Integration
About The Customer
KappAhl is a leading Nordic retailer with 400 stores across Sweden, Norway, Finland, and Poland. The company offers 12,000 unique style/color combinations per season. KappAhl was previously using two home-grown systems to perform approximately 3,800 allocations per night. However, these systems were not providing the level of detail and flexibility required to meet the company's goals. KappAhl needed a solution that could improve its allocation precision and size compliance with local demands, while also improving sales and maintaining margins.
The Challenge
KappAhl, a leading Nordic retailer, was facing challenges with its allocation system. The company was performing approximately 3,800 allocations per night on two home-grown systems, which were no longer meeting the demand. The former systems were automated but did not allow the company to work at the lower level of detail required to achieve its goals. With 12,000 unique style/color combinations per season across 400 stores in Sweden, Norway, Finland, and Poland, KappAhl needed greater flexibility and expanded capabilities to improve sales while maintaining margins.
The Solution
KappAhl implemented Luminate Retail, a solution powered by artificial intelligence (AI) and machine learning (ML) technology. The implementation took about 12 months, including two months of testing. Luminate Retail now manages 95 percent of all KappAhl allocations, representing 80 percent of crossdock flows and 100 percent of replenishment. This solution has provided KappAhl with the flexibility and capabilities it needed to improve its allocation precision and size compliance with local demands.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.
Case Study
Improving Production Line Efficiency with Ethernet Micro RTU Controller
Moxa was asked to provide a connectivity solution for one of the world's leading cosmetics companies. This multinational corporation, with retail presence in 130 countries, 23 global braches, and over 66,000 employees, sought to improve the efficiency of their production process by migrating from manual monitoring to an automatic productivity monitoring system. The production line was being monitored by ABB Real-TPI, a factory information system that offers data collection and analysis to improve plant efficiency. Due to software limitations, the customer needed an OPC server and a corresponding I/O solution to collect data from additional sensor devices for the Real-TPI system. The goal is to enable the factory information system to more thoroughly collect data from every corner of the production line. This will improve its ability to measure Overall Equipment Effectiveness (OEE) and translate into increased production efficiencies. System Requirements • Instant status updates while still consuming minimal bandwidth to relieve strain on limited factory networks • Interoperable with ABB Real-TPI • Small form factor appropriate for deployment where space is scarce • Remote software management and configuration to simplify operations
Case Study
Digital Retail Security Solutions
Sennco wanted to help its retail customers increase sales and profits by developing an innovative alarm system as opposed to conventional connected alarms that are permanently tethered to display products. These traditional security systems were cumbersome and intrusive to the customer shopping experience. Additionally, they provided no useful data or analytics.
Case Study
How Sirqul’s IoT Platform is Crafting Carrefour’s New In-Store Experiences
Carrefour Taiwan’s goal is to be completely digital by end of 2018. Out-dated manual methods for analysis and assumptions limited Carrefour’s ability to change the customer experience and were void of real-time decision-making capabilities. Rather than relying solely on sales data, assumptions, and disparate systems, Carrefour Taiwan’s CEO led an initiative to find a connected IoT solution that could give the team the ability to make real-time changes and more informed decisions. Prior to implementing, Carrefour struggled to address their conversion rates and did not have the proper insights into the customer decision-making process nor how to make an immediate impact without losing customer confidence.
Case Study
Ensures Cold Milk in Your Supermarket
As of 2014, AK-Centralen has over 1,500 Danish supermarkets equipped, and utilizes 16 operators, and is open 24 hours a day, 365 days a year. AK-Centralen needed the ability to monitor the cooling alarms from around the country, 24 hours a day, 365 days a year. Each and every time the door to a milk cooler or a freezer does not close properly, an alarm goes off on a computer screen in a control building in southwestern Odense. This type of alarm will go off approximately 140,000 times per year, equating to roughly 400 alarms in a 24-hour period. Should an alarm go off, then there is only a limited amount of time to act before dairy products or frozen pizza must be disposed of, and this type of waste can quickly start to cost a supermarket a great deal of money.
Case Study
Supermarket Energy Savings
The client had previously deployed a one-meter-per-store monitoring program. Given the manner in which energy consumption changes with external temperature, hour of the day, day of week and month of year, a single meter solution lacked the ability to detect the difference between a true problem and a changing store environment. Most importantly, a single meter solution could never identify root cause of energy consumption changes. This approach never reduced the number of truck-rolls or man-hours required to find and resolve issues.