Customer Company Size
Large Corporate
Region
- America
Country
- United States
Product
- AtScale
- Snowflake
- Tableau
- Amazon Web Services (AWS)
Tech Stack
- Hadoop
- SQL
Implementation Scale
- Enterprise-wide Deployment
Impact Metrics
- Cost Savings
- Productivity Improvements
Technology Category
- Analytics & Modeling - Big Data Analytics
- Infrastructure as a Service (IaaS) - Cloud Computing
Applicable Industries
- E-Commerce
- Retail
Applicable Functions
- Business Operation
- Discrete Manufacturing
Use Cases
- Inventory Management
- Predictive Maintenance
- Supply Chain Visibility
Services
- Cloud Planning, Design & Implementation Services
- Data Science Services
About The Customer
Rakuten is a shopping rewards company that leverages data on shopper behavior, pricing, and commissions to create compelling offers for their customers, who receive cash-back incentives from Rakuten. With over 13 million e-commerce customers and partnerships with 70+ businesses, Rakuten depends on sophisticated analytics and data management to maintain a differentiated offering in the highly competitive e-commerce industry. While Rakuten originally consolidated data from multiple siloed systems to a single, on-premises data lake built on Hadoop in 2016, they still faced challenges related to maintaining the environment. The sheer electrical costs of hosting their own internal server farm as well as the expensive hardware required presented obstacles for this fast-growing operation.
The Challenge
Rakuten, a shopping rewards company, had moved from their initial SQL database in 2014 to an AtScale-powered Hadoop solution in 2018. However, this wasn’t sufficient and they soon began to experience a resource crunch based on the sheer size of their database. Rakuten's existing architecture meant that business users didn't have the computing resources necessary to work with large datasets. This led to competition between business units for hard disk access, memory, and CPU time. The internal team was frustrated with the competition for resources, and the operational overhead and associated hardware and electricity costs also meant the solution was no longer cost-efficient. That, coupled with the continuous processing demands on storage infrastructure, forced Rakuten to consider new solutions for their data needs. They knew they needed more processing capability and flexibility to continue serving their customers effectively.
The Solution
AtScale helped Rakuten transition their analytics to the cloud while still retaining all the analytical capabilities they had built, enabling them to deliver consistency for their team. AtScale insulated their Tableau-based reports and dashboards from changes in underlying raw data. While location and schemas changed, the AtScale model was untouched, allowing them to preserve their investment. Once they had moved their data to Snowflake, AtScale was able to help Rakuten better optimize their costs by right-sizing cloud resource consumption based on real-time usage. AtScale also helped smooth out and mitigate user concurrency challenges without requiring additional compute resources and leveraged intelligent aggregates to accelerate query performance while keeping cloud costs down.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.

Case Study
Improving Production Line Efficiency with Ethernet Micro RTU Controller
Moxa was asked to provide a connectivity solution for one of the world's leading cosmetics companies. This multinational corporation, with retail presence in 130 countries, 23 global braches, and over 66,000 employees, sought to improve the efficiency of their production process by migrating from manual monitoring to an automatic productivity monitoring system. The production line was being monitored by ABB Real-TPI, a factory information system that offers data collection and analysis to improve plant efficiency. Due to software limitations, the customer needed an OPC server and a corresponding I/O solution to collect data from additional sensor devices for the Real-TPI system. The goal is to enable the factory information system to more thoroughly collect data from every corner of the production line. This will improve its ability to measure Overall Equipment Effectiveness (OEE) and translate into increased production efficiencies. System Requirements • Instant status updates while still consuming minimal bandwidth to relieve strain on limited factory networks • Interoperable with ABB Real-TPI • Small form factor appropriate for deployment where space is scarce • Remote software management and configuration to simplify operations

Case Study
Digital Retail Security Solutions
Sennco wanted to help its retail customers increase sales and profits by developing an innovative alarm system as opposed to conventional connected alarms that are permanently tethered to display products. These traditional security systems were cumbersome and intrusive to the customer shopping experience. Additionally, they provided no useful data or analytics.

Case Study
How Sirqul’s IoT Platform is Crafting Carrefour’s New In-Store Experiences
Carrefour Taiwan’s goal is to be completely digital by end of 2018. Out-dated manual methods for analysis and assumptions limited Carrefour’s ability to change the customer experience and were void of real-time decision-making capabilities. Rather than relying solely on sales data, assumptions, and disparate systems, Carrefour Taiwan’s CEO led an initiative to find a connected IoT solution that could give the team the ability to make real-time changes and more informed decisions. Prior to implementing, Carrefour struggled to address their conversion rates and did not have the proper insights into the customer decision-making process nor how to make an immediate impact without losing customer confidence.

Case Study
Ensures Cold Milk in Your Supermarket
As of 2014, AK-Centralen has over 1,500 Danish supermarkets equipped, and utilizes 16 operators, and is open 24 hours a day, 365 days a year. AK-Centralen needed the ability to monitor the cooling alarms from around the country, 24 hours a day, 365 days a year. Each and every time the door to a milk cooler or a freezer does not close properly, an alarm goes off on a computer screen in a control building in southwestern Odense. This type of alarm will go off approximately 140,000 times per year, equating to roughly 400 alarms in a 24-hour period. Should an alarm go off, then there is only a limited amount of time to act before dairy products or frozen pizza must be disposed of, and this type of waste can quickly start to cost a supermarket a great deal of money.

Case Study
Supermarket Energy Savings
The client had previously deployed a one-meter-per-store monitoring program. Given the manner in which energy consumption changes with external temperature, hour of the day, day of week and month of year, a single meter solution lacked the ability to detect the difference between a true problem and a changing store environment. Most importantly, a single meter solution could never identify root cause of energy consumption changes. This approach never reduced the number of truck-rolls or man-hours required to find and resolve issues.