Applicable Industries
- Retail
Applicable Functions
- Sales & Marketing
Use Cases
- Retail Store Automation
- Time Sensitive Networking
About The Customer
Superbet is a leading sports betting and gaming operator headquartered in Romania and rapidly growing in Poland. The company's retail network spans across over 1,300 shops and offers customers pre-match and live sports betting, slots, virtual betting, and lottery offerings. As part of their transformation into a digital-first entertainment company, Superbet has started incorporating marketing automation into aspects of their core business. The company operates across multiple geographies, with localized campaigns in place across various channels.
The Challenge
Superbet, a leading sports betting and gaming operator, was facing challenges in measuring the effectiveness of their marketing efforts due to the lack of a dedicated marketing data team. They were using various platforms for their operations, but tracking and updating across these platforms was proving to be time-consuming and at times, impossible due to limited resources. The company operates across multiple geographies, with localized campaigns in place across various channels. Therefore, being able to track, analyze, and improve their marketing programs was crucial for their continued growth. The challenge was to find a solution that could streamline their process, improve the speed and accuracy of their marketing data and analysis, and save time.
The Solution
Superbet partnered with Adverity to address their challenges. Adverity's 'plug and play' approach allowed Superbet to easily integrate their data from multiple sources, tweak data, and ingest it directly through their data warehouse. This partnership not only streamlined their entire process but also increased visibility, enabling a much smoother governance process over their data sources. Superbet is now able to rapidly pinpoint anything out of the ordinary and know exactly where to turn to find a fast, effective solution. Adverity’s intuitive interface makes the user journey easy and understandable, saving Superbet over 10 hours per week, which can now be dedicated to more important marketing activities.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
Related Case Studies.
Case Study
Improving Production Line Efficiency with Ethernet Micro RTU Controller
Moxa was asked to provide a connectivity solution for one of the world's leading cosmetics companies. This multinational corporation, with retail presence in 130 countries, 23 global braches, and over 66,000 employees, sought to improve the efficiency of their production process by migrating from manual monitoring to an automatic productivity monitoring system. The production line was being monitored by ABB Real-TPI, a factory information system that offers data collection and analysis to improve plant efficiency. Due to software limitations, the customer needed an OPC server and a corresponding I/O solution to collect data from additional sensor devices for the Real-TPI system. The goal is to enable the factory information system to more thoroughly collect data from every corner of the production line. This will improve its ability to measure Overall Equipment Effectiveness (OEE) and translate into increased production efficiencies. System Requirements • Instant status updates while still consuming minimal bandwidth to relieve strain on limited factory networks • Interoperable with ABB Real-TPI • Small form factor appropriate for deployment where space is scarce • Remote software management and configuration to simplify operations
Case Study
Digital Retail Security Solutions
Sennco wanted to help its retail customers increase sales and profits by developing an innovative alarm system as opposed to conventional connected alarms that are permanently tethered to display products. These traditional security systems were cumbersome and intrusive to the customer shopping experience. Additionally, they provided no useful data or analytics.
Case Study
How Sirqul’s IoT Platform is Crafting Carrefour’s New In-Store Experiences
Carrefour Taiwan’s goal is to be completely digital by end of 2018. Out-dated manual methods for analysis and assumptions limited Carrefour’s ability to change the customer experience and were void of real-time decision-making capabilities. Rather than relying solely on sales data, assumptions, and disparate systems, Carrefour Taiwan’s CEO led an initiative to find a connected IoT solution that could give the team the ability to make real-time changes and more informed decisions. Prior to implementing, Carrefour struggled to address their conversion rates and did not have the proper insights into the customer decision-making process nor how to make an immediate impact without losing customer confidence.
Case Study
Ensures Cold Milk in Your Supermarket
As of 2014, AK-Centralen has over 1,500 Danish supermarkets equipped, and utilizes 16 operators, and is open 24 hours a day, 365 days a year. AK-Centralen needed the ability to monitor the cooling alarms from around the country, 24 hours a day, 365 days a year. Each and every time the door to a milk cooler or a freezer does not close properly, an alarm goes off on a computer screen in a control building in southwestern Odense. This type of alarm will go off approximately 140,000 times per year, equating to roughly 400 alarms in a 24-hour period. Should an alarm go off, then there is only a limited amount of time to act before dairy products or frozen pizza must be disposed of, and this type of waste can quickly start to cost a supermarket a great deal of money.
Case Study
Supermarket Energy Savings
The client had previously deployed a one-meter-per-store monitoring program. Given the manner in which energy consumption changes with external temperature, hour of the day, day of week and month of year, a single meter solution lacked the ability to detect the difference between a true problem and a changing store environment. Most importantly, a single meter solution could never identify root cause of energy consumption changes. This approach never reduced the number of truck-rolls or man-hours required to find and resolve issues.