Haixing Miao
haixing@tsinghua.edu.cn
English, Chinese
Beijing
Tsinghua University
Physics
  • 2002/09-2006/07 Bachelor's Degree: University of Science and Technology of China, Supervisor: Professor Zhang Yang
  • 2007/05-2010/09 PhD: University of Western Australia, Supervisors: Professors David Blair, Zhao Chunong, and Chen Yanbei (external)
  • 2010/11-2013/11 Postdoctoral Researcher, California Institute of Technology
  • 2014/02-2016/02 Marie Curie Scholar, University of Birmingham
  • 2016/03-2018/07 Lecturer, Rutherford Scholar, Birmingham Scholar, University of Birmingham
  • 2018/08-2021/09 Associate Professor, University of Birmingham
  • 2021/10-present Associate Professor, Tsinghua University
  • 2016-2021 Rutherford Scholar
  • 2016-2021 Birmingham Scholar
  • 2016 Breakthrough Prize in Fundamental Physics (as part of the LIGO team)
  • 2014-2016 EU Marie Curie Scholar
  • 2010 International Gravitational Wave Thesis Prize
Gravitational wave detection
Quantum precision measurement
Quantum measurement theory
Quantum effects of non-relativistic gravity
Axion-like dark matter detection
  • Signatures of the quantum nature of gravity in the differential motion of two masses, A. Datta, and H. Miao, 2021
  • Two-Carrier Scheme: Evading the 3 dB Quantum Penalty of Heterodyne Readout in Gravitational-Wave Detectors, T. Zhang, P. Jones, J. Smetana, H. Miao, D. Martynov, A. Freise, and S. Ballmer, 2021
  • Enhancing interferometer sensitivity without sacrificing bandwidth and stability: beyond single-mode and resolved-sideband approximation, X. Li, J. Smetana, A. Ubhi, J. Bentley, Y. Chen, Y. Ma, H. Miao, and D. Martynov, 2021
  • Direct approach to realizing quantum filters for high-precision measurements, J. Bentley, H. Nurdin, Y. Chen, and H. Miao, 2021
  • A Broadband Signal Recycling Scheme for Approaching the Quantum Limit from Optical Losses, T. Zhang, J. Bentley, and H. Miao, 2021
  • Quantum correlation of light mediated by gravity, H. Miao, D. Martynov, and H. Yang, 2020
  • Quantum squeezing schemes for heterodyne readout, T. Zhang, D. Martynov, A. Freise, and H. Miao, 2020
  • Quantum-enhanced interferometry for axion searches, D. Martynov, and H. Miao, 2020
  • Broadband quantum noise reduction in future long baseline gravitational-wave detectors via EPR entanglement, J. Beckey, Y. Ma, V. Boyer, and H. Miao, 2019
  • Converting the signal-recycling cavity into an unstable optomechanical filter to enhance the detection bandwidth of gravitational-wave detectors, J. Bentley, P. Jones, D. Martynov, A. Freise, and H. Miao, 2019
  • Exploring the sensitivity of gravitational wave detectors to neutron star physics, D. Martynov, H. Miao, H. Yang, F. Hernandez Vivanco, E. Thrane, R. Smith, P. Lasky, W. E. East, R. Adhikari, A. Bauswein, A. Brooks, Y. Chen, T. Corbitt, T. Corbitt, H. Grote, Y. Levin, C. Zhao, and A. Vecchio, 2019
  • Advanced quantum techniques for future gravitational-wave detectors, S. Danilishin, F. Khalili, and H. Miao, 2019
  • Quantum limit for laser interferometric gravitational wave detectors from optical dissipation, H. Miao, N. Smith, and M. Evans, 2019
  • Enhanced Dynamic Casimir Effect in Temporally and Spatially Modulated Josephson Transmission Line, S. Ma, H. Miao, Y. Xiang, and S. Zhang, 2019
  • On the fundamental quantum limits of multi-carrier optomechanical sensors, D. Branford, H. Miao, and A. Datta, 2018
  • Towards the design of gravitational-wave detectors for neutron-star physics, H. Miao, H. Yang, and D. Martynov, 2018
  • Towards the Fundamental Quantum Limit of Linear Measurements of Classical Signals, H. Miao, R. Adhikari, Y. Ma, B. Pang, and Y. Chen, 2017
  • Proposal for Gravitational-Wave Detection Beyond the Standard Quantum Limit via EPR Entanglement, Y. Ma, H. Miao, B. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, 2017
  • General quantum constraints on detector noise in continuous linear measurements, H. Miao, 2017
  • Multi-spatial-mode effects in squeezed-light-enhanced interferometric gravitational wave detectors, D. Töyrä, D. Brown, M. Davis, S. Song, A. Wormald, J. Harms, H. Miao, and A. Freise, 2017
Gravitational Waves Quantum Limit Interferometry Ligo Quantum Noise Detector Sensitivity Dark Matter Axions Quantum Gravity Measurement Theory Measurement Precision Quantum Theory Sensitivity Enhancement Heisenberg Limit Quantum Optics Quantum States Entanglement Measurement Noise Analysis Detector Design Sensitivity Quantum Mechanics Theoretical Physics Signal Processing Data Analysis Non-Relativistic Effects Theoretical Models Desktop Experiments Gravitational Effects Experimental Physics Detection Methods Low-Mass Detection Laser Interferometry Sensitivity Analysis

Contact us

Let's talk!
* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that IoT ONE may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from IoT ONE.
Submit

Thank you for your message!
We will contact you soon.