• >
  • >
  • >
  • >
  • >
Comsol > Case Studies > Simulation-LED Strategy for Corrosion Prevention

Simulation-LED Strategy for Corrosion Prevention

Comsol  Logo
Customer Company Size
Large Corporate
Region
  • America
Country
  • United States
Product
  • COMSOL Multiphysics
  • LiveLink for MATLAB
Tech Stack
  • COMSOL Multiphysics
  • MATLAB
  • Orientation Imaging Microscopy (OIM)
Implementation Scale
  • Pilot projects
Impact Metrics
  • Cost Savings
  • Innovation Output
  • Environmental Impact Reduction
Technology Category
  • Analytics & Modeling - Predictive Analytics
  • Analytics & Modeling - Digital Twin / Simulation
  • Application Infrastructure & Middleware - Data Visualization
Applicable Industries
  • Transportation
  • Marine & Shipping
Applicable Functions
  • Maintenance
  • Quality Assurance
Use Cases
  • Predictive Maintenance
  • Structural Health Monitoring
  • Process Control & Optimization
Services
  • Software Design & Engineering Services
  • System Integration
About The Customer
The Naval Research Laboratory (NRL) in Washington, D.C., is a premier research facility dedicated to advancing scientific knowledge and technological innovation for the U.S. Navy and Marine Corps. The NRL conducts cutting-edge research in various fields, including materials science, electronics, and environmental science. The laboratory's mission is to provide the Navy with the necessary scientific and technical expertise to maintain its technological edge. The NRL's research efforts are aimed at solving complex problems that impact national security and defense, including the prevention of corrosion, which is a significant maintenance issue for the Navy.
The Challenge
Corrosion is a significant issue costing billions annually, particularly affecting the transportation industry, including sea, air, and ground transport. The Naval Research Laboratory (NRL) is addressing this problem through fundamental research in corrosion science. The challenge lies in understanding the complex multiphysics problem of corrosion, especially pitting corrosion, which occurs due to electrochemical reactions and mass transport in an electrolyte solution. The irregular growth of corrosion pits due to the metal microstructure has not been adequately addressed in previous research. The goal is to develop new corrosion-resistant materials by understanding the microstructure-corrosion correlations.
The Solution
The NRL team, led by Siddiq Qidwai, has developed a comprehensive approach to model the growth of corrosion pits in metals within a seawater environment. This involves fully-coupled multiphysics modeling of pit growth under mechanical forces, taking into account the metal's microstructure. The team uses orientation imaging microscopy (OIM) to acquire 3D images of the metal microstructure, which are then incorporated into the COMSOL Multiphysics model. The pitting potential for different crystallographic orientations is determined using MATLAB and integrated into the COMSOL model to calculate the corrosion rate and advance the corrosion front. This innovative approach allows for a detailed understanding of the impact of microstructure on corrosion.
Operational Impact
  • The NRL's approach has led to the development of a novel experimental method to evaluate corrosion at the micron scale.
  • The integration of microstructure into the multiphysics model has provided valuable insights into the relationship between microstructure, pit shape, and growth.
  • The use of COMSOL Multiphysics and MATLAB has enabled the team to simulate complex corrosion mechanisms and validate their models through experimental data.
  • The research has the potential to significantly reduce the cost and inconvenience of corrosion by enabling the design of materials that inherently resist corrosion.
  • The project has advanced the understanding of pitting corrosion, paving the way for future innovations in corrosion prevention.
Quantitative Benefit
  • Corrosion costs the U.S. economy as much as $600 billion annually, equivalent to 2-4% of the gross national product.
  • The transportation industry, including sea, air, and ground transport, faces extremely high maintenance costs due to corrosion.

Case Study missing?

Start adding your own!

Register with your work email and create a new case study profile for your business.

Add New Record

Related Case Studies.

Contact us

Let's talk!
* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that AGP may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from AGP.
Submit

Thank you for your message!
We will contact you soon.