Case Studies.
Add Case Study
Our Case Study database tracks 22,657 case studies in the global enterprise technology ecosystem.
Filters allow you to explore case studies quickly and efficiently.
Download Excel
Filters
-
(49)
- (49)
- (26)
- (16)
-
(25)
- (23)
- (3)
- (1)
-
(10)
- (8)
- (2)
-
(2)
- (2)
-
(1)
- (1)
- View all 5 Technologies
- (11)
- (11)
- (10)
- (7)
- (5)
- View all 24 Industries
- (42)
- (39)
- (7)
- (5)
- (3)
- View all 8 Functional Areas
- (39)
- (24)
- (12)
- (11)
- (9)
- View all 21 Use Cases
- (50)
- (50)
- (9)
- (6)
- (50)
Selected Filters
![]() |
Using Multiphysics Simulation to Prevent Building Damage
In extreme climates, moisture and temperature changes can damage building foundations. Vahanen Group, a company specializing in building services, analyzes the potential for frost damage in buildings being considered for renovation. Their work is especially vital in cases where renovations are necessary due to existing damage, such as when heating systems and pipes need to be replaced. The challenge is to determine whether certain renovations to foundations or heating systems would require adding external frost insulation, which, if added unnecessarily, would waste valuable money, time, and work.
|
|
|
![]() |
Let There Be Light: A Brighter Future for Oleds
OLEDs, despite their advantages, suffer from significant light loss and energy inefficiency. Researchers at Konica Minolta are working to address these issues by understanding and mitigating the complex plasmon coupling phenomenon, which accounts for 40% of the light lost in OLEDs. This phenomenon involves the interaction of light with surface plasmons at the interface between the cathode and the organic material, leading to energy dissipation as heat. The challenge is to find ways to reduce these losses and improve the overall efficiency and brightness of OLEDs.
|
|
|
![]() |
The Sweet Side of Simulation Behind the Scenes at Nestlé
Ensuring the consistency and quality of chocolate bars, wafers, and cereals is a significant challenge for Nestlé. For chocolate bars, the flow rate and pressure of the chocolate exiting each nozzle must be consistent to ensure uniform weight and nutritional content. For wafers, uneven heating during baking can cause different moisture concentrations, affecting texture and potentially causing spontaneous snapping. For cereals, the high-temperature extruder must maintain consistent pressure and friction to cook the dough evenly, and the viscometer housing must withstand high pressure to ensure consistent dough quality.
|
|
|
![]() |
Addressing Oil Spill Cleanup Using Hydrophobic Meshes
Oil spills are urgent and unexpected events that cause significant damage to aquatic environments and marine life. Current methods for containing and recovering spilled oil, such as booms and skimmers, are often costly and only partially effective. These methods need to be deployed quickly to be effective, and even then, they often fail to recover most of the oil, which can sink to the sea floor. The collected oil-water mixture is often only partially usable, leading to further environmental concerns and wasted oil.
|
|
|
![]() |
Medtronic Advances Ablation Technology with Multiphysics Simulation
Physicians rate predictability as their number one concern with ablation performance. The higher the level of predictability, the easier it is for a physician to plan a treatment procedure that will be safer, more effective, and less time-consuming. RF ablation procedures face challenges due to varying electrical conductivities of tissues and the rapid decrease in electrical conductivity as tissue temperature approaches 100°C. This makes it difficult to generate temperatures high enough to cause cell breakdown. MW ablation technology attempts to overcome these limitations by using an EM field radiated into the tissue. However, tissue type and vaporization of water during ablation cause the size and shape of the EM field to vary, affecting predictability.
|
|
|
![]() |
The Thermal Management of Li-ion Battery Packs
Given the long development cycle for vehicles, automobile manufacturers must plan their upcoming lines far in advance. With growing emission regulations and the rising cost of gas, full electric and hybrid vehicles are becoming more attractive and growing in market share. At the Fiat Research Center in Orbassano, the focus is on developing electric and hybrid vehicles using lithium and lead-acid batteries as well as supercapacitors. Fiat currently has several light trucks that run on electric drives, and the next application will be an electric version of the Fiat 500, which has been announced for the US market. The challenge lies in combining as many as 100 lithium-ion battery pouch cells into battery packs that generate the 350V needed while providing sufficient cooling and keeping the packs as small and light as possible. The maximum temperature differential among all the cells in a pack must not exceed 5 °C. If the temperature of the pack is too low, it limits the charge you can extract; if it is too high, it risks thermal runaway, leading to electrolyte emission, smoke, or fire.
|
|
|
![]() |
From Spreadsheets to Multiphysics Applications, ABB Continues to Power Up the Transformer Industry
Companies developing new and improved power transformer equipment incur costs for prototyping and testing as they work to reduce transformer hum. At ABB, a team of engineers develops multiphysics simulations and custom-built applications to offer insight into their designs. Transformer noise often comes from several sources, such as vibrations in the transformer core or auxiliary fans and pumps used in the cooling system. Each of these sources needs to be addressed differently to reduce noise. ABB’s transformers comprise a metal core with coils of wire wound around different sections, an enclosure or tank to protect these components, and an insulating oil inside the tank. Passing alternating current through the windings of one coil creates a magnetic flux that induces current in an adjacent coil. The voltage adjustment is achieved through different numbers of coil turns. Because the core is made of steel, a magnetostrictive material, these magnetic fluxes — which alternate direction — cause mechanical strains. This generates vibrations from the quick growing and shrinking of the metal. These vibrations travel to the tank walls through the oil and the clamping points that hold the inner core in place, creating an audible hum known as core noise. In addition to the core noise, the alternating current in the coil produces Lorentz forces in the individual windings, causing vibrations known as load noise that add to the mechanical energy transferred to the tank.
|
|
|
![]() |
Capacitively Coupled Plasma Analysis
The multiphysics nature of plasmas presents enormous challenges for numerical simulations; analysis of the CCP process presents added difficulty due to the existence of a plasma sheath, the dynamic behavior of the plasma, and the large number of RF cycles required to reach a periodic steady state. Power deposition into the plasma is highly non-linear and the strong gradient of the electric field in the plasma sheath may lead to numerical instabilities unless a sufficiently fine mesh is applied. Typical CCP reactors may also contain sharp geometric corners that can cause a substantial local electric field that provide unphysical ion fluxes.
|
|
|
![]() |
Metamaterials Make Physics Seem Like Magic
Metamaterials, which are artificially structured materials, have the potential to revolutionize various fields by manipulating electromagnetic waves. However, the challenge lies in the high level of control required over their structure and the high ohmic loss due to the metal components. These materials derive their unique properties from their structure rather than their chemical composition, making the design and fabrication of complex structures a significant challenge. Additionally, precise knowledge of the response at each frequency of interest is needed, making accurate frequency-domain simulations a requirement. The high ohmic loss causes electromagnetic waves to be strongly attenuated, posing another challenge in the practical application of metamaterials.
|
|
|
![]() |
Graphene Paves the Way for Next-Generation Plasmonics
Graphene, a single-atom-thick film of graphite, has shown immense potential in various applications since its discovery in 2004. While its electrical and thermal conductivity made it attractive for electronics, its optoelectronic capabilities were initially overlooked. However, it soon became clear that graphene could serve as a transparent conducting electrode, offering comparable or better performance than indium tin oxide (ITO). Despite its potential, fabricating high-quality, large-area graphene films remains a challenge. This has hindered the practical application of graphene in optoelectronics and photonics, particularly in the field of plasmonics, which deals with the efficient excitation, control, and use of plasmons. The diffraction limit of light poses a fundamental challenge in photonics, but plasmonics helps address this by enabling light confinement at the nanoscale. Researchers at Purdue University, led by Alexander V. Kildishev, are leveraging simulation tools to overcome these challenges and bring graphene closer to practical applications.
|
|
|
![]() |
Simulating Laser-Material Interactions
California-based LLNL oversees the National Ignition Facility (NIF), home to the world’s largest and most energetic laser. The giant machine—with 192 separate beams and 40,000 optics that focus, reflect, and guide those beams— can amplify emitted laser-pulse energy by as much as ten billion times and direct it towards a target about the size of a pencil eraser. The laser produces temperatures, pressures, and densities that are similar to those found in the cores of stars, supernovae, and large planets. Astrophysics and nuclear researchers use the giant laser to better understand the universe, utilizing such technologies as inertial confinement fusion (ICF), where hydrogen fuel is heated and compressed to the point where nuclear fusion reactions take place. However, repeated use of this powerful laser can damage the optics within the system. “The optics can be quite expensive,” says Matthews. “The high-power laser light generated by the NIF can damage some of the fused silica optics, creating little pits in the surface—similar to the ding you get when a rock hits your car’s windshield. We do everything we can to repair and recycle the damaged ones.” An example of two damaged optic surfaces before and after repair is shown in Figure 1.
|
|
|
![]() |
Application Builder and COMSOL Server™: A Review
The challenge addressed by the Application Builder and COMSOL Server™ is the complexity and detail-oriented nature of traditional modeling tools. These tools often require significant expertise to operate, making it difficult for non-experts to interact with and utilize the models effectively. The need for a more intuitive and user-friendly interface that can present modeling results in real-time and be used in various scenarios such as lectures, demonstrations, and product simulations is evident. Additionally, there is a demand for a solution that allows models to be used as standalone applications or web resources, thereby broadening their accessibility and usability.
|
|
|
![]() |
Optimizing Hematology Analysis: When Physical Prototypes Fail, Simulation Provides the Answers
Laboratory tests, such as hematology analysis, influence up to 70 percent of critical decisions including hospital admittance, discharge, and treatment. The accuracy of these tests is crucial for patient outcomes. HORIBA Medical, a global supplier of medical diagnostic equipment, faced challenges in optimizing their hematology analysis equipment using physical prototypes alone. The complexity of the physical processes involved, such as high fluid velocity, pressure drop, heat transfer, and intense electric fields, made it difficult to achieve accurate measurements. Additionally, factors like particle trajectory and orientation through the micro-aperture system further complicated the accuracy of the impedance measurement system.
|
|
|
![]() |
On the Cutting Edge of Hearing Aid Research
Engineers face daily technical challenges in hearing aid design, with feedback being a major issue that leads to high-pitched squealing or whistling, limiting the amount of gain the aid can provide. Feedback usually occurs when a hearing aid’s microphone picks up sound or vibration inadvertently diverted from what’s being channeled into the ear canal and sends it back through the amplifier, creating undesirable oscillations. The challenge is to design hearing aids that are compact and unobtrusive, yet still capable of providing a powerful sound output to overcome the user’s hearing loss. This makes solving the feedback issue more challenging, as engineers must cram all the hardware components into the smallest space possible without causing feedback instability.
|
|
|
![]() |
Multiphysics Analysis Helps Preserve the Past
The built environment, encompassing everything from large metropolitan areas to individual buildings, is continually impacted by physics-based processes such as heat transfer, air flow, and moisture transport. These processes can affect energy efficiency, health and safety, operating costs, durability, and historic preservation. Jos van Schijndel, founder of CompuToolAble and assistant professor at Eindhoven University of Technology, faces the challenge of making complex modeling and simulation concepts accessible to clients and students. His goal is to improve the built environment and preserve historic structures and artifacts through accurate modeling and simulation.
|
|
|
![]() |
Better Ways to Heat and Cool Buildings
The heating and cooling of buildings account for nearly 50 percent of energy consumption in Europe, prompting researchers to seek alternatives to conventional technologies. One promising solution is adsorption-based heating and cooling systems driven by heat rather than electricity. This technology can utilize heat from solar collectors, waste heat from industrial facilities, or combined heat and power units, significantly reducing electricity consumption and CO2 emissions. However, the development of these systems is complex due to their discontinuous operating cycles, varying peak energy fluxes, and the dynamic behavior determined by complex heat and mass transfer phenomena. To realize their full potential, the technology must become more efficient, compact, and cost-effective.
|
|
|
![]() |
Bringing Glucose Monitoring to New Levels through Integrated Sensor Design
Close metabolic control through glucose monitoring is essential for persons with diabetes to maintain good health and avoid medical complications. However, the chemical reactions on the sensing strips used in glucose monitors are sensitive to environmental conditions and chemical interferences. Sensors are shipped worldwide, stored under uncertain conditions, and used by individuals with varying levels of knowledge and experience. Robust design is crucial for enabling sensors to survive these environments, deliver accurate results, and detect conditions that would cause errors. Multiphysics simulation is now used alongside experiments and calculations, enabling scientists to understand the chemical, electrical, and biological phenomena interacting in these systems so they can optimize their design and measurement methods.
|
|
|
![]() |
Simulation-LED Strategy for Corrosion Prevention
Corrosion is a significant issue costing billions annually, particularly affecting the transportation industry, including sea, air, and ground transport. The Naval Research Laboratory (NRL) is addressing this problem through fundamental research in corrosion science. The challenge lies in understanding the complex multiphysics problem of corrosion, especially pitting corrosion, which occurs due to electrochemical reactions and mass transport in an electrolyte solution. The irregular growth of corrosion pits due to the metal microstructure has not been adequately addressed in previous research. The goal is to develop new corrosion-resistant materials by understanding the microstructure-corrosion correlations.
|
|
|
![]() |
Simulation Turns up the Heat and Energy Efficiency at Whirlpool Corporation
In terms of energy consumption, ovens have the most room for improvement of any appliance in the kitchen, with only 10 to 12 percent of the total energy expended used to heat the food being prepared. This is one of the reasons why Whirlpool Corporation, the world’s largest home appliance manufacturer, is exploring new solutions for enhancing the resource efficiency of their domestic ovens. Using a combination of experimental testing and finite element analysis (FEA), Whirlpool engineers are seeking solutions to improve energy efficiency by exploring new options for materials, manufacturing, and thermal element design. In partnership with the GREENKITCHEN® project, a European initiative that supports the development of energy-efficient home appliances with reduced environmental impact, researchers at Whirlpool R&D (Italy) are studying the energy consumption of their ovens by exploring the heat transfer processes of convection, conduction, and radiation. “Multiphysics analysis allows us to better understand the heat transfer process that occurs within a domestic oven, as well as test innovative strategies for increasing energy efficiency,” says Nelson Garcia-Polanco, Research and Thermal Engineer at Whirlpool R&D working on the GREENKITCHEN® project. “Our goal is to reduce the energy consumption of Whirlpool’s ovens by 20 percent.”
|
|
|
![]() |
Simulating the Release Mechanism in Drug-Eluting Stents
Treating arteries in the heart that have been blocked by plaque is a common challenge for medical professionals. Known as stenosis, this condition restricts blood flow to the heart, resulting in symptoms such as shortness of breath and chest pain. It is sometimes resolved using stents, which are small, mesh-like tubular structures designed to treat blocked arteries. They are usually placed in the coronary artery and expanded with a balloon catheter to keep the artery open. While stents are successful at holding arteries open, an artery can re-narrow because of excessive tissue growth over the stent. This is called restenosis and is the body’s natural healing response, but it can actually impede recovery. Thus, drug-eluting stents were developed to deliver medicine — which acts to reduce cell proliferation and prevent the unwanted growth — into the artery tissue. These contain a coating composed of medicine and a polymer matrix designed to provide a controlled delivery; each strand of the stent mesh is surrounded by this coating. Stent designs have improved dramatically in recent years in an effort to reduce restenosis rates, but much remains unknown regarding the release process.
|
|
|
![]() |
Revving up Electrohydraulic Power Steering with Virtual Prototyping
Designing an electrohydraulic power steering (EHPS) system involves managing numerous interrelated components, where minor adjustments can significantly impact the system's function, efficiency, and reliability. The complexity of the system, which includes an electronic control unit (ECU), torque sensor, valve, and pipe system, requires a detailed understanding of how each part interacts. Traditional validation and physical testing methods are expensive and time-consuming, often taking up to six months. This slow process is not conducive to the fast-paced design cycles required in the automotive industry. Therefore, there is a need for a more efficient method to refine and optimize EHPS designs before moving to physical testing.
|
|
|
![]() |
Researching a New Fuel for the HFIR: Advancements at ORNL Require Multiphysics Simulation to Support Safety and Reliability
The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is undergoing a conversion from highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel to meet the Global Threat Reduction Initiative's requirements. This conversion presents a complex challenge due to the unique fuel and core design of the HFIR, as well as its high power density. The primary challenge is to ensure that the new LEU fuel can maintain the reactor's performance, safety, and reliability. Researchers need to evaluate the impact of the fuel change on various aspects such as neutron scattering, isotope production, irradiation experiments, and neutron activation analyses. Additionally, the HFIR will need to operate at a higher power level (100 MW) to maintain the same neutron flux, which increases the demands on the reactor's thermal margin and safety.
|
|
|
![]() |
Thermal Characterization of an Electronic Device with A Custom App
Simulation consultants are using custom applications as an effective way to communicate their work to clients. Instead of delivering a static report, they can now deploy a product that contains the intricacy of an unabridged mathematical model, with the clarity and usability of an app. This lets clients run their simulations independently. At BE CAE & Test, we have created such an app to simulate a surface-mount device (SMD). Whether devices use or convert energy, they must properly manage heat so that they continue to operate in a designated temperature range. An SMD is an example of one electronic system that clients ask us to model. We make use of COMSOL Multiphysics® software to investigate these systems due to the wide range of physics that can be taken into account and the ease with which one can couple them.
|
|
|
![]() |
Enhancing Performance and Safety of Medical Implantable Devices with Multiphysics Simulation
The development of a device meant to assist or completely replace the functioning of the heart is undeniably complex. This design process involves immense challenges, from supplying power to the device to ensuring it does not interfere with normal biological functioning. Researchers at St. Jude Medical use multiphysics simulation to engineer LVADs, Left Ventricular Assist Devices, in an ongoing effort to improve the outlook and quality of life of patients with heart failure. The condition typically begins with the left side of the heart, as the left ventricle is responsible for pumping oxygen-rich blood throughout the body, a greater distance than the right ventricle, which pumps blood through the lungs. Often, in patients with a poorly functioning left ventricle, an LVAD can provide mechanical circulatory support. The ventricle assist device is one of the most complex machines ever implanted in a human being. An LVAD must circulate the entire human blood stream and support life, as well as be compatible with the internal environment of the human body. Thoratec, now part of St. Jude Medical, brought LVADs to a wide market in 2010, after years of clinical trials.
|
|
|
![]() |
HPC-Enabled Simulation Aids in the Design of Customized Highpower Electrical Devices
BLOCK Transformatoren-Elektronik faced increasing difficulty in designing inductors and transformers with aging simulation software. The company needed to reduce the number of prototypes created before finalizing a design to save costs and improve services. The challenge was to meet precise specifications concerning working frequencies, product sizes and weights, electrical power losses, electrical insulation, and varying environmental conditions. Additionally, the equipment needed to have product lifetimes of 30 years. The company sought a solution that would allow them to quickly and accurately improve designs while reducing the number of physical prototypes.
|
|
|
![]() |
Improving Gas Pipeline Squeeze-Off Standards with Numerical Simulation
Routine natural gas maintenance often requires digging into main roads, causing significant disruptions. GTI aimed to investigate the industry standards for squeeze-off length in gas pipelines to make the process more efficient and less invasive. The current ASTM standard requires a squeeze-off distance of either three pipe diameters or twelve inches from the next pipe fitting, whichever is greater. This large length requirement leads to more digging, rerouted roads, and increased time and costs. GTI researchers sought to determine if the twelve-inch distance is necessary for smaller pipes, aiming to reduce the minimum required distance without exceeding industry-accepted levels of strain and stress concentration.
|
|
|
![]() |
Boost Sales and Build Stronger Relationships with the Deployment of Simulation Apps
Rick Beyerle, a senior scientist at GrafTech's Advanced Energy Technologies (AET) subsidiary, identified a significant challenge in the sales process of their carbon and graphite products. The sales team needed to build trust with prospective customers, often requiring a 'proof of concept' to establish credibility. However, creating these proofs of concept was resource-intensive, requiring Rick and his team to divert R&D resources to modify and rerun validated models for each customer's specific configuration. The sales team, untrained in numerical modeling, found it difficult to navigate the complex models, which featured hundreds of parameters and boundary conditions. This situation led to inefficiencies and delays, as the application engineers were instructed to prioritize live tests over time-consuming simulations.
|
|
|
![]() |
Simulations for Solar
The semiconductor industry relies heavily on silicon wafers, which are also crucial for photovoltaic (PV) applications. However, the cost per unit of power generated by solar cells needs to be reduced to make solar energy competitive with fossil fuels. EMIX's challenge was to optimize their continuous cold crucible casting (4C) process to produce high-purity silicon efficiently. This process involves numerous variables, including cooling methods, pull rates, and electromagnetic fields, which need to be optimized to improve production efficiency and reduce costs.
|
|
|
![]() |
Making Biofuel A Costeffective, Renewable Source of Energy
The production process of biofuels from plant-based materials poses significant economic barriers to widespread use. Despite the benefits of biofuels being renewable, clean-burning, and carbon-neutral, their availability is limited, particularly for vehicle use. As of 2014, only 2% of retail fueling stations in the U.S. offered ethanol-based fuel E85. The National Renewable Energy Laboratory (NREL) aims to overcome these barriers by gaining a better understanding of the physical processes behind biofuel conversion. Supported by the Computational Pyrolysis Consortium, NREL is developing computational models that accurately represent biomass particle geometry to improve reactor design and operation for mass production of biofuel.
|
|
|
![]() |
Getting Touchyfeely with Touchscreen Design
Cypress Semiconductor faced the challenge of ensuring that their touchscreen technologies perform flawlessly under a variety of conditions and applications. This includes smartphones, laptops, automotive environments, industrial applications, and home appliances. Each application requires a different design, and the touchscreens must track finger or stylus positions with high accuracy. The capacitive touchscreens need to determine the touch object's size, location, duration, and movement direction. The engineers needed to create multiple electrostatic simulations for various device geometries and parameters, referred to as a 'design box'.
|
|