Upload Avatar (500 x 500)
Tang Tieshan
tangtsh@ioz.ac.cn
Chinese, English
Beijing
Chinese Academy of Sciences
Institute of Zoology
  • 1998 - PhD: Institute of Developmental Biology, Chinese Academy of Sciences
  • Discovered conserved ion channels and mechanisms maintaining cellular calcium homeostasis
  • Clarified molecular mechanisms of calcium signaling disorders in Huntington's disease and craniofacial dysmorphism dementia syndrome
  • Post-2000 - University of Texas Southwestern Medical Center, Department of Physiology - Postdoctoral Research and Lecturer
  • Current - Researcher at State Key Laboratory of Membrane Biology, Group Leader of Molecular Neurobiology Research Group
Cellular and molecular mechanisms and treatment of neurodevelopmental and neurodegenerative diseases
  • Micropeptide PACMP Inhibition Elicits Synthetic-lethal Effects by Decreasing CtIP and Poly(ADP-ribosyl)ation., Zhang C, Zhou B, Gu F, Liu H, Wu H, Yao F, Zheng H, Fu H, Chong W, Cai S, Huang M, Ma X, Guo Z, Li T, Deng W, Zheng M, Ji Q, Zhao Y, Ma Y, Wang QE, Tang TS and Guo C, 2022
  • iASPP suppresses Gp78-mediated TMCO1 degradation to maintain Ca2+ homeostasis and control tumor growth and drug resistance., Zheng S, Zhao D, Hou G, Zhao S, Zhang W, Wang X, Li L, Liang L, Tang TS, and Hu Y, 2022
  • Determining the Fate of Neurons in SCA3: ATX3, a Rising Decision Maker in Response to DNA Stresses and Beyond., Tu Y, Li X, Zhu X, Liu X, Guo C, Jia D, Tang TS, 2020
  • Miro2 supplies a platform for Parkin translocation to damaged mitochondria., Wang JQ, Zhu S, Wang Y, Wang F, An C, Jiang D, Gao L, Tu Y, Zhu X, Wang Y, Liu H, Gong J, Sun Z, Wang X, Liu L, Yang K, Guo C, Tang TS, 2019
  • RNA-splicing factor SART3 regulates translesion DNA synthesis., Huang M, Zhou B, Gong J, Xing L, Ma X, Wang F, Wu W, Shen H, Sun C, Zhu X, Yang Y, Sun Y, Liu Y, Tang TS, Guo C, 2018
  • TMCO1 is essential for ovarian follicle development by regulating ER Ca2+ store of granulosa cells., Sun Z, Zhang H, Wang X, Wang QC, Zhang C, Wang JQ, Wang YH, An CQ, Yang KY, Wang Y, Gao F, Guo C, Tang TS, 2018
  • Epigenetic profiles in polyglutamine disorders., Liu H, Tang TS, Guo C, 2018
  • Polη O-GlcNAcylation governs genome integrity during translesion DNA synthesis., Ma X, Liu H, Li J, Wang Y, Ding YH, Shen H, Yang Y, Sun C, Huang M, Tu Y, Liu Y, Zhao Y, Dong MQ, Xu P, Tang TS, Guo C, 2017
  • RBM45 competes with HDAC1 for binding to FUS in response to DNA damage., Gong J, Huang M, Wang F, Ma X, Liu H, Tu Y, Xing L, Zhu X, Zheng H, Fang J, Li X, Wang Q, Wang J, Sun Z, Wang X, Wang Y, Guo C, Tang TS, 2017
  • Ataxin-3 promotes genome integrity by stabilizing Chk1., Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, Huang M, Gong J, Li X, Wang Y, Guo C, Tang TS, 2017
  • The Machado–Joseph Disease Deubiquitinase Ataxin-3 Regulates the Stability and Apoptotic Function of p53., Liu H, Li X, Ning G, Zhu S, Ma X, Liu X, Liu C, Huang M, Schmitt I, Wüllner U, Niu Y, Guo C, Wang Q, Tang TS, 2016
  • TMCO1 is an ER Ca2+ load-activated Ca2+ (CLAC) channel., Wang QC, Zheng Q, Tan H, Zhang B, Li X, Yang Y, Yu J, Liu Y, Chai H, Wang X, Sun Z, Wang JQ, Zhu S, Wang F, Yang M, Guo C, Wang H, Zheng Q, Li Y, Chen Q, Zhou A, Tang TS, 2016
  • FANCD2 and REV1 cooperate in the protection of nascent DNA strands in response to replication stress., Yang Y, Liu Z, Wang F, Temviriyanukul P, Ma X, Tu Y, Lv L, Lin YF, Huang M, Zhang T, Pei H, Chen BP, Jansen JG, de Wind N, Fischhaber PL, Friedberg EC, Tang TS, Guo C, 2015
  • Towards therapeutic targets for SCA3: insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance., Li X, Liu H, Fischhaber PL, Tang TS, 2015
  • CSB-PGBD3 Mutations Cause Premature Ovarian Failure., Qin Y, Guo T, Li G, Tang TS, Zhao S, Jiao X, Gong J, Gao F, Guo C, Simpson JL, Chen ZJ, 2015
  • Adult neural progenitor cells from Huntington’s disease mouse brain exhibit increased proliferation and migration due to enhanced Ca2+ ROS signals., Xie W, Wang JQ, Wang QC, Wang Y, Yao S, Tang TS, 2015
  • Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct., Liu Y, Yang Y, Tang TS, Zhang H, Wang Z, Friedberg E, Yang W, Guo C, 2014
  • Epigenetic modifications as novel therapeutic targets for Huntington's disease., Wang F, Fischhaber PL, Guo C, Tang TS, 2014
  • Mismatch repair protein MSH2 regulates translesion DNA synthesis following exposure of cells to UV radiation., Lv L, Wang F, Ma X, Yang Y, Wang Z, Liu H, Li X, Liu Z, Zhang T, Huang M, Friedberg E, Tang TS, Guo C, 2013
  • Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington's disease., Wang F, Yang Y, Lin X, Wang JQ, Wu YS, Xie W, Wang D, Zhu S, Liao YQ, Sun Q, Yang YG, Luo HR, Guo C, Han C, Tang TS, 2013
  • Mouse DNA Polymerase Kappa Has A Functional Role in the Repair of DNA Strand Breaks., Zhang X, Lv L, Chen Q, Yuan F, Zhang T, Yang Y, Zhang H, Wang Y, Qian L, Chen B, Zhang Y, Friedberg EC, Tang TS, Guo C, 2013
  • Dysregulation of Mitochondrial Calcium Signaling and Superoxide Flashes Cause Mitochondrial Genomic DNA Damage in Huntington’s Disease., Wang JQ, Chen Q, Wang X, Wang QC, Wang Y, Cheng HP, Guo C, Sun Q, Chen Q, Tang TS, 2013
  • The role of PARP1 in the DNA damage response and its application in tumor therapy., Wang Z, Wang F, Tang TS, Guo C, 2012
  • SnapShot: Nucleotide Excision Repair., Guo C, Tang TS, Friedberg EC, 2010
  • Tetrabenazine is neuroprotective in Huntington’s disease mice., Wang H, Chen X, Li Y, Tang TS and Bezprozvanny I, 2010
  • Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model., Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I, 2009
  • Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3., Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I, 2008
  • Small molecule activation of neuronal cell fate., Schneider JW, Gao Z, Li S, Farooqi M, Tang TS, Bezprozvanny I, Frantz D, Hsieh J, 2008
  • Requirements for the interaction of mouse Polκ with ubiquitin, and its biological significance., Guo C, Tang TS, Bienko M, Dikic I and Friedberg EC, 2008
  • Dopaminergic signaling and apoptosis of medium spiny neurons in Huntington’s disease., Tang TS, Chen X, Liu J, Bezprozvanny I, 2007
  • REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo., Guo C, Sonoda E, Tang TS, Parker JL, Bielen AB, Takeda S, Ulrich HD, Friedberg EC, 2006
  • Ubiquitin-Binding Motifs in Rev1 Protein are Required for Its Role in the Tolerance of DNA Damage., Guo C, Tang TS, Bienko M, Sonoda E, Parker JL, Bielen AB, Takeda S, Ulrich HD, Dikic I, Friedberg EC, 2006
  • Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease., Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny I, 2005
  • Reelin modulates NMDA receptor activity in cortical neurons., Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, Herz J, 2005
  • Dopamine receptor-mediated Ca2+ signaling in striatal medium spiny neurons., Tang TS, Bezprozvanny I, 2004
  • Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A., Tu H, Tang TS, Wang Z, Bezprozvanny I, 2004
  • Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) trisphosphate receptor type 1., Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I, 2003
  • Modulation of the type 1 inositol (1,4,5)-trisphosphate receptor function by PKA and PP1-alpha., Tang TS, Tu H, Wang Z, and Bezprozvanny I, 2003
  • Ca2+ oscillations induced by a cytosolic sperm protein factor are mediated by a maternal machinery which functions only once in mammalian eggs., Tang TS, Dong JB, Huang XY and Sun FZ, 2000
Calcium Signaling Mitochondria Dna Repair Neurodevelopment Neurodegeneration Huntington'S Disease Als Scas Therapeutic Strategies Mouse Disease Models

Contact us

Let's talk!
* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that IoT ONE may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from IoT ONE.
Submit

Thank you for your message!
We will contact you soon.