Upload Avatar (500 x 500)
Fei Su
sufei0999@ems.hrbmu.edu.cn
English, Chinese
Heilongjiang
Harbin Medical University
College of Bioinformatics Science and Technology
  • 2019-2020 Postdoctoral: Icahn School of Medicine at Mount Sinai
  • 2014-2017 PhD: Harbin Medical University, Biomedical Engineering
  • 2005-2008 Master's: Harbin Medical University, Biomedical Engineering
  • 1999-2003 Bachelor's: Harbin University of Science and Technology, Electronic Information Engineering
  • Published over 30 SCI papers, with more than 10 as the first author
  • 2022-09 to Present - Harbin Medical University - Professor, Department of Bioinformatics
  • 2019-08 to 2020-08 - Icahn School of Medicine at Mount Sinai - Postdoctoral Researcher
  • 2016-09 to 2022-09 - Harbin Medical University - Associate Professor, Department of Bioinformatics
  • 2008-09 to 2016-09 - Harbin Medical University - Lecturer, Department of Bioinformatics
  • 2003-07 to 2008-09 - Harbin Medical University - Assistant Lecturer
  • 2023: Two Second Prizes in the American College Student Mathematical Modeling Competition
  • 2022: One Second Prize in the American College Student Mathematical Modeling Competition
Single-cell sequencing
Transcriptional regulation mechanisms
  • Identification of circulating miRNA as early diagnostic molecular markers in malignant glioblastoma base on decision tree joint scoring algorithm., Fei Su, Yueyang Liu, Yonghua Zong, Ziyu Gao, Guiqin Zhou, Chao Deng, Yuyu Liu, Yue Zeng, Xiaoyan Ma, Yongxia Wang, Yinwei Wu3, Fusheng Xu, Lili Guan, Baoquan Liu., 2023
  • Prioritizing key synergistic circulating microRNAs for the early diagnosis of biliary tract cancer., Fei Su, Ziyu Gao, Yueyang Liu, Guiqin Zhou, Wei Gao, Chao Deng, Yuyu Liu, Yihao Zhang, Xiaoyan Ma, Yongxia Wang, Lili Guan, Yafang Zhang, Baoquan Liu., 2022
  • Integrated Tissue and Blood miRNA Expression Profiles Identify Novel Biomarkers for Accurate Non-Invasive Diagnosis of Breast Cancer: Preliminary Results and Future Clinical Implications., Fei Su, Ziyu Gao, Yueyang Liu, Guiqin Zhou, Ying Cui, Chao Deng, Yuyu Liu, Yihao Zhang, Xiaoyan Ma, Yongxia Wang, Lili Guan, Yafang Zhang, Baoquan Liu., 2022
  • Serum microRNA-21 predicted treatment outcome and survival in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy combined with trastuzumab., B Liu, F Su, X Lv, W Zhang, X Shang, Y Zhang., 2019
  • Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common., Su F, Shang D, Xu Y, Feng L, Yang H, Liu B, Su S, Chen L, Li X., 2015
  • SCARA5 plays a critical role in the progression and metastasis of breast cancer by inactivating the ERK1/2, STAT3, and AKT signaling pathways., You K, Su F, Liu L, Lv X, Zhang J, Zhang Y, Liu B., 2017
  • Serum miR-21 and miR-125b as markers predicting neoadjuvant chemotherapy response and prognosis in stage II/III breast cancer., Liu B, Su F, Chen M, Li Y, Qi X, Xiao J, Li X, Liu X, Liang W, Zhang Y, Zhang J., 2017
  • Changes of serum miR34a expression during neoadjuvant chemotherapy predict the treatment response and prognosis in stage II/III breast cancer., Liu B, Su F, Li Y, Qi X, Liu X, Liang W, You K, Zhang Y, Zhang J., 2017
  • Expression of VEGF-D, SMAD, and SMAD7 and Their Relationship with Lymphangiogenesis and Prognosis in Colon Cancer., Su F, Li X, You K, Chen M, Xiao J, Zhang Y, Ma J, Liu B., 2016
  • Association between VEGF-A, C and D expression and lymph node involvement in breast cancer: a meta-analysis., Su F, Liu B, Chen M, Xiao J, Li X, Lv X, Ma J, You K, Zhang J, Zhang Y., 2016
  • Inference of patient-specific subpathway activities reveals a functional signature associated with the prognosis of patients with breast cancer., Han J, Liu S, Jiang Y, Xu C, Zheng B, Jiang M, Yang H, Su F, Li C, Zhang Y., 2018
  • The LncRNA Connectivity Map: Using LncRNA Signatures to Connect Small Molecules, LncRNAs and Diseases., Haixiu Yang, Desi Shang, Yanjun Xu, Chunlong Zhang, Li Feng, Zeguo Sun, Xinrui Shi, Yunpeng Zhang, Junwei Han, Fei Su, Chunquan Li, Xia Li., 2017
  • BioM2MetDisease: a manually curated database for associations between microRNAs, metabolites, small molecules and metabolic diseases., Yanjun Xu, Haixiu Yang, Tan Wu, Qun Dong, Zeguo Sun, Desi Shang, Feng Li, Yingqi Xu, Fei Su, Siyao Liu, Yunpeng Zhang, Xia Li., 2017
  • Identification of novel prognostic indicators for triple-negative breast cancer patients through integrative analysis of cancer genomics data and protein interactome data., Fan Zhang, Chunyan Ren, Hengqiang Zhao, Lei Yang, Fei Su, Ming-Ming Zhou, Junwei Han, Eric A. Sobie, Martin J. Walsh., 2016
  • LncRNAs2Pathways: Identifying the pathways influenced by a set of lncRNAs of interest based on a global network propagation method., Han J, Liu S, Sun Z, Zhang Y, Zhang F, Zhang C, Shang D, Yang H, Su F, Xu Y, Li C, Ren H, Li X., 2017
  • Identification of a lncRNA involved functional module for esophageal cancer subtypes., Li S, Xu Y, Sun Z, Feng L, Shang D, Zhang C, Shi X, Han J, Su F, Yang H, Zhao J, Song C, Zhang Y, Li C, Li X., 2016
  • Subpathway-LNCE: Identify dysfunctional subpathways competitively regulated by lncRNAs through integrating lncRNA-mRNA expression profile and pathway topologies., Shi Xinrui, Xu Yanjun, Zhang Chunlong, Feng Li, Sun Zeguo, Hang Junwei, Su Fei, Zhang Yunpeng, Li., 2016
  • A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways., Han J, Li C, Yang H, Xu Y, Zhang C, Ma J, Shi X, Liu W, Shang D, Yao Q, Zhang Y, Su F, Feng L, Li X., 2015
  • ESEA Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis., Han J, Shi X, Zhang Y, Xu Y, Jiang Y, Zhang C, Feng L, Yang H, Shang D, Sun Z, Su Fei, Li Chun quan, Li Xia., 2015
  • Global Prioritization of Disease Candidate Metabolites Based on a Multi-omics Composite Network., Qianlan Yao, Yanjun Xu, Haixiu Yang, Desi Shang, Chunlong Zhang, Yunpeng Zhang, Zeguo Sun, Xinrui Shi, Li Feng, Junwei Han, Fei Su, Chunquan Li, Xia Li., 2015
  • Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data Multiple Myeloma as a Case., Zhang Y, Liu W, Xu Y, Li C, Wang Y, Yang H, Zhang C, Su F, Li Y, Li X., 2015
  • Subpathway-GMir Identifying miRNA-mediated metabolic subpathways by integrating condition-specific genes, microRNAs, and pathway topologies., Feng L, Xu Y, Zhang Y, Sun Z, Han J, Zhang C, Yang H, Shang D, Su F, Shi X, Li S, Li C, Li X., 2015
  • A global view of network of lncRNAs and their binding proteins., Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X., 2014
  • MPINet Metabolite Pathway Identification via Coupling of Global Metabolite Network Structure and Metabolomic Profile., Li F, Xu Y, Shang D, Yang H, Liu W, Han J, Sun Z, Yao Q, Zhang C, Ma J, Su F, Feng L, Shi X, Zhang Y, Li J, Gu Q, Li X, Li C., 2014
  • Prioritizing Candidate Disease Metabolites Based on Global Functional Relationships between Metabolites in the Context of Metabolic Pathways., Shang D, Li C, Yao Q, Yang H, Xu Y, Han J, Li J, Su F, Zhang Y, Zhang C, Li D, Li X., 2014
  • The detection of risk pathways, regulated by miRNAs, via the integration of sample-matched miRNA-mRNA profiles and pathway structure., Li J, Li C, Han J, Zhang C, Shang D, Yao Q, Zhang Y, Zhang C, Li D, Li X., 2014
  • Allele-Specific Behavior of Molecular Networks: Understanding Small-Molecule Drug Response in Yeast., Zhang F, Gao B, Xu L, Li C, Hao D, Zhang S, Zhou M, Su F, Chen X, Zhi H, Li X., 2013
  • Topologically inferring risk-active pathways toward precise cancer classification by directed random walk., Liu W, Li C, Xu Y, Yang H, Yao Q, Han J, Shang D, Zhang C, Su F, Li X, Xiao Y, Zhang F, Dai M, Li X., 2013
Single-Cell Sequencing Transcription Regulation Mechanisms Bioinformatics Cancer Microrna Lncrna Diagnostics

Contact us

Let's talk!
* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that IoT ONE may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from IoT ONE.
Submit

Thank you for your message!
We will contact you soon.