• >
  • >
  • >
  • >
  • >

Case Studies.

Add Case Study

Our Case Study database tracks 18,927 case studies in the global enterprise technology ecosystem.
Filters allow you to explore case studies quickly and efficiently.

Download Excel
Filters
  • (151)
    • (127)
    • (9)
    • (4)
    • (3)
    • (3)
    • (2)
    • (2)
    • (2)
    • (1)
    • (1)
    • (1)
    • (1)
    • View all
  • (136)
    • (24)
    • (18)
    • (17)
    • (15)
    • (11)
    • (9)
    • (8)
    • (7)
    • (6)
    • (5)
    • (5)
    • (5)
    • (4)
    • (4)
    • (4)
    • (3)
    • (3)
    • (3)
    • (3)
    • (2)
    • (2)
    • (1)
    • (1)
    • (1)
    • (1)
    • (1)
    • (1)
    • View all
  • (58)
    • (27)
    • (17)
    • (7)
    • (5)
    • (4)
    • (2)
    • View all
  • (49)
    • (41)
    • (3)
    • (2)
    • (2)
    • (1)
    • (1)
    • (1)
    • View all
  • (41)
    • (35)
    • (4)
    • (2)
    • (1)
    • View all
  • View all 15 Technologies
  • (146)
  • (84)
  • (62)
  • (44)
  • (42)
  • (30)
  • (29)
  • (27)
  • (27)
  • (23)
  • (23)
  • (19)
  • (17)
  • (13)
  • (11)
  • (11)
  • (11)
  • (11)
  • (10)
  • (8)
  • (8)
  • (8)
  • (7)
  • (7)
  • (6)
  • (6)
  • (4)
  • (4)
  • (4)
  • (3)
  • (3)
  • (3)
  • (2)
  • (2)
  • (1)
  • (1)
  • (1)
  • View all 37 Industries
  • (330)
  • (126)
  • (31)
  • (31)
  • (21)
  • (15)
  • (11)
  • (6)
  • (4)
  • View all 9 Functional Areas
  • (77)
  • (69)
  • (65)
  • (65)
  • (46)
  • (32)
  • (28)
  • (25)
  • (23)
  • (20)
  • (20)
  • (18)
  • (16)
  • (16)
  • (16)
  • (13)
  • (12)
  • (12)
  • (11)
  • (11)
  • (11)
  • (8)
  • (7)
  • (6)
  • (6)
  • (6)
  • (6)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (4)
  • (3)
  • (3)
  • (3)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • View all 73 Use Cases
  • (152)
  • (138)
  • (40)
  • (39)
  • (13)
  • (9)
  • (3)
  • (1)
  • (1)
  • View all 9 Services
  • (382)
Selected Filters
382 case studies
Sort by:
Enhancing Research Capabilities with High-Performance Computing: A Case Study of QIMR - Altair Industrial IoT Case Study
Enhancing Research Capabilities with High-Performance Computing: A Case Study of QIMR
The Queensland Institute of Medical Research (QIMR), one of Australia's largest and most successful medical research institutes, faced a significant challenge in providing shared High-Performance Computing (HPC) resources to its hundreds of scientists, students, and support staff. The institute, which is home to over 50 separate laboratories supporting six research departments, needed advanced facilities to support its scientists' cutting-edge projects and attract the best researchers. To meet this need, an HPC cluster was established to be shared as a service among the scientific labs at QIMR. However, managing job scheduling and optimizing throughput on this shared resource was a complex task that required a reliable workload management system.
Download PDF
Optimizing Appliance Packaging for Global Distribution: A Case Study on Mabe - Altair Industrial IoT Case Study
Optimizing Appliance Packaging for Global Distribution: A Case Study on Mabe
Mabe, a global company that designs, produces, and distributes appliances to over 70 countries, faced a challenge in improving the protection of its washer-dryer by optimizing packaging material. The company wanted to reduce potential transit damage to its products while avoiding the use of excessive packaging that would lead to significantly higher material and shipping costs. The challenge was to produce an optimized packaging design that took into account a variety of loading scenarios and alternative package designs, and to do so early in the design stage, before any physical testing of the packaging was performed. Mabe also wanted to transfer the analytical simulation techniques developed for the washer-dryer to packaging for other products in the future, allowing the company to optimize and accelerate its design efforts.
Download PDF
Optimizing Fleet Management with IoT: A Case Study on Boyacá - Altair Industrial IoT Case Study
Optimizing Fleet Management with IoT: A Case Study on Boyacá
Boyacá, a company with 35 years of experience in newspaper delivery, was facing a significant challenge. The company needed to increase the productivity of its drivers and reduce delivery costs. The fulfillment of time schedules was crucial for customer satisfaction, and late deliveries could result in additional costs. Boyacá needed real-time information on arrival and departure times at each hub of the distribution chain to control costs with the lowest possible investment. The company uses several hundred trucks for delivery every day, making the task of tracking and optimizing delivery times a complex one.
Download PDF
Unilever's Journey to Optimizing Packaging Designs & Reducing Prototype Costs with IoT - Altair Industrial IoT Case Study
Unilever's Journey to Optimizing Packaging Designs & Reducing Prototype Costs with IoT
Unilever, a global leader in the consumer goods industry, was seeking ways to maintain its innovative edge in the male grooming market. The company was particularly focused on differentiating its Lynx (Axe) brand from competitors. The challenge was to design a new deodorant packaging concept that would stand out in the market. However, Unilever lacked the necessary in-house expertise to adopt a simulation and analysis approach for the design and testing of the new can. They needed a development partner to assist with the design and testing of the new packaging concept.
Download PDF
Optimizing Formula Racing Car Parts with IoT: A Case Study on Gator Motorsports - Altair Industrial IoT Case Study
Optimizing Formula Racing Car Parts with IoT: A Case Study on Gator Motorsports
Gator Motorsports, the Formula SAE team based out of the University of Florida, was faced with the challenge of improving the performance of their Formula-style racecar. The team aimed to decrease the weight and increase the strength of the car parts for better competition performance and faster design. The critical components that needed redesigning included the pedal box and suspension bell cranks. The team's goal was to develop and construct a single-seat race car for the non-professional weekend autocross racer with the best overall package of design, construction, performance, and cost. The challenge was not only to engineer and produce a reliable, high-performance vehicle but also to organize and manage a team to develop a feasible product for the market.
Download PDF
ProteusDS: A Dynamic Analysis Software for Complex Marine Operations - Altair Industrial IoT Case Study
ProteusDS: A Dynamic Analysis Software for Complex Marine Operations
The case study presents four distinct challenges faced by different sectors of the marine industry. The first challenge was to design mooring systems, considering the tension in the mooring lines, the movement of the floater, anchor capacity, and interactions of lines with the seabed. The second challenge was to equip ROV pilots training with simulation software and real-time data about structure, cable, and umbilical tensions. The third challenge was to efficiently assess the motion/response of tidal energy platforms in complex wind, wave, current, and loading, and ensure the design is maintainable. The last challenge was to determine the effect of strong tidal currents acting on cable and barge during cable lay operations and determine the operational impacts of having to lay cable after a slack tide.
Download PDF
Achieving Superior Crash Performance for the Soueast DX7 with IoT - Altair Industrial IoT Case Study
Achieving Superior Crash Performance for the Soueast DX7 with IoT
Soueast, a China-based automobile manufacturer, was faced with the challenge of optimizing the crash performance of its DX7 vehicle while reducing reliance on physical tests. Crash safety is a crucial part of the development process, and designing a car body that has good collision energy absorption performance is one of the main goals of automotive design. However, due to the high cost of prototype crash tests, it is not practical to validate a design’s feasibility through trial and error alone. The key to the success of virtual simulation is dependent on whether the simulation results are an accurate representation of the physical test results. The target for the DX7 project was to achieve the best possible crashworthiness while under tight time and budget constraints. The two main challenges were ensuring the CAE simulation results accurately reflect the physical crash test and analyzing and optimizing the restraint system.
Download PDF
Innovative Architectural Design and Teaching at Biberach University with Altair's OptiStruct - Altair Industrial IoT Case Study
Innovative Architectural Design and Teaching at Biberach University with Altair's OptiStruct
Biberach University of Applied Sciences, specifically the Institute for Architecture and Urban Development, was faced with the challenge of creating modern, functional, stiff, and light architectural designs. The university wanted to provide its students with practical experience and introduce them to cutting-edge design and engineering tools. The challenge was to create designs that were not only aesthetically pleasing but also structurally efficient and cost-effective. The university also aimed to foster a higher level of collaboration between engineers and architects, reduce the number of design iterations, and ensure that the final design remained faithful to the initial concept.
Download PDF
Characterization of Sensorless Motor Control Technology Using solidThinking Embed - Altair Industrial IoT Case Study
Characterization of Sensorless Motor Control Technology Using solidThinking Embed
Texas Instruments (TI) was faced with the challenge of characterizing their FAST™ observer, a part of their InstaSPIN™ technology. This technology enables designers to identify, tune, and fully control any type of three-phase, variable speed, sensorless, synchronous or asynchronous motor control system. The task was assigned to Dave Wilson, Senior Motor Systems Engineer with the C2000 group. Wilson attempted to characterize the FAST™ observer by setting up a dynamometer (dyno) system with a circuit board to control it. However, this process was slow, tedious, and required constant recalibration due to output variances over time and temperature changes. Furthermore, the electromagnetic torque could not be measured on the dyno, only the shaft torque could. This was a problem since the software could not be properly tested as the hardware he was using was not adequately equipped to test it.
Download PDF
Korea Meteorological Administration's Energy-Efficient Supercomputing with Altair's PBS Professional and AcuSolve - Altair Industrial IoT Case Study
Korea Meteorological Administration's Energy-Efficient Supercomputing with Altair's PBS Professional and AcuSolve
The Korea Meteorological Administration (KMA) was faced with the challenge of reducing energy consumption while maintaining performance in their new Supercomputer Unit 4, a Cray® XC40™ system. This system, equipped with over a hundred thousand computing cores, runs quadrillions of computing jobs every second, which consumes a great deal of energy and causes high heat. To balance operations, it was essential to keep the National Center for Meteorological Supercomputer (NCMS) at a cool and constant temperature. However, the increased energy consumption required for Supercomputer Unit 4 put a significant burden on the air conditioning (A/C) system operations. KMA needed to determine the requirements for dealing with the additional energy consumption and cooling needs.
Download PDF
Sensorless Motor Control Technology Characterization Using VisSim: A Texas Instruments Case Study - Altair Industrial IoT Case Study
Sensorless Motor Control Technology Characterization Using VisSim: A Texas Instruments Case Study
The C2000 MCU group at Texas Instruments (TI), a global semiconductor design and manufacturing company, was faced with the challenge of characterizing their new software product, InstaSPIN™. This software enables designers to identify, tune, and fully control any type of three-phase, variable speed, sensorless, synchronous or asynchronous motor control system. It uses TI’s new software encoder, a sensorless observer called FAST™ (Flux, Angle, Speed and Torque), which is embedded in the read-only-memory (ROM) of Piccolo devices. Dave Wilson, Senior Motor Systems Engineer with The C2000 Group, was tasked with characterizing the FAST™ observer and developing a datasheet for it. However, the process was slow and tedious due to output variances over time and temperature changes, and it required constant recalibration. Moreover, the hardware he was using was not adequately equipped to test the FAST software.
Download PDF
Optimizing High-Speed Catamaran Design with IoT Technology - Altair Industrial IoT Case Study
Optimizing High-Speed Catamaran Design with IoT Technology
The École de Technologie Supérieure (ÉTS) Team Rafale, a group of aerospace engineers, faculty members, and students, faced the challenge of designing, building, and racing a C-Class catamaran for the 'Little America’s Cup'. The rules of the competition stipulated that the catamaran had to be less than 25ft long, with a maximum width of 14ft, and less than 300sq ft. sail area. This presented a significant challenge as the catamaran needed to be built in less than 18 months. The hydrofoils, despite being less than two square feet in surface area, needed to be able to lift the entire boat and its two-man crew out of the water. The 30ft mast at the heart of the rigid wingsail carries almost 4000 lb. of compression while weighing less than 30lbs. The team needed to drive innovation and use the best materials possible to meet these requirements.
Download PDF
Leveraging IoT in Formula SAE Contests: A Case Study of Cal Poly Pomona Formula SAE Team - Altair Industrial IoT Case Study
Leveraging IoT in Formula SAE Contests: A Case Study of Cal Poly Pomona Formula SAE Team
The Cal Poly Pomona Formula SAE (CPPFSAE) team, a student-run team participating in the Formula SAE® contests, faced a significant challenge in their quest to be among the best in the competition. Each year, the team sought to apply new materials and technologies to improve their race cars. However, the introduction of new materials such as composites created new requirements and design and development challenges. The team's goal was to leverage the advantages of each material, such as lightweight design or stiffness potential, but each material had to be designed individually. A specific challenge arose when the team decided to design and optimize a new wheel shell. They needed a software tool that would allow them to create a composite laminate design. They encountered difficulties in getting the carbon fiber laminate prepreg to conform to their mold, which they attempted to solve by increasing the number of debulking cycles and switching to hot debulk. A post machining process on the wheel was also necessary.
Download PDF
Minimising Mass and Increasing Durability of a Vehicle Suspension System Using HyperStudy & OptiStruct - Altair Industrial IoT Case Study
Minimising Mass and Increasing Durability of a Vehicle Suspension System Using HyperStudy & OptiStruct
Gestamp, a global chassis component supplier, was faced with the challenge of reducing the mass and increasing the durability of a rear twist beam (RTB) suspension system. The RTB design is a complex task that requires careful consideration of elastokinematic performance in addition to meeting stiffness and durability targets. The design of experiments (DOE) and optimisation methods were being used to explore the available design space and minimise the mass of a low cost RTB design. The durability requirement was identified as one of the main mass drivers for this type of RTB design. The design of a “U Section” RTB typically requires consideration of several interlinked targets, including Roll Stiffness and Roll Steer, which are strongly influenced by the shape, position and gauge of the torsion element.
Download PDF
Improving Rudder Shock Loading Following a Nearby Blast Event Using RADIOSS - Altair Industrial IoT Case Study
Improving Rudder Shock Loading Following a Nearby Blast Event Using RADIOSS
The challenge was to assess the capability of a ship's rudder assembly to withstand the shock loading following a nearby blast event. This was a critical task as the engineers in the Marine, Shipbuilding, and Offshore industries face many design challenges including physical space constraints, extreme weather conditions, deep water and remote locations. These constraints create an extreme environment for the engineer to develop a sound, reliable and safe operating platform. Prior to the installation of a modified design of a ship's steering gear, it was required to assess the capability of the rudder assembly to withstand the shock loading following a nearby blast event.
Download PDF
Predicting & Eliminating Squeak & Rattle Noise at FIAT with IoT - Altair Industrial IoT Case Study
Predicting & Eliminating Squeak & Rattle Noise at FIAT with IoT
FIAT, one of the world’s largest vehicle manufacturers, faced a significant challenge in accurately simulating and eliminating squeak and rattle noise in their passenger cars. These noises, which occur when two parts of an assembly are in relative motion due to a specific excitation load, were often interpreted by customers as a lack of quality in the product. Previously, FIAT had only been able to study the potential for these noises by testing physical components produced using near-final designs. If any noise issues were discovered, the team could only apply quick fixes, which were often time-consuming and costly. FIAT’s NVH (Noise, Vibration, and Harshness) Department wanted to explore the potential of studying squeak and rattle during the virtual design stage, using a simulation-based methodology that could be implemented inside a tool around which they could build a new design process.
Download PDF
Enhancing Sports Impact Simulations with HyperWorks: A Case Study at Loughborough University's STI - Altair Industrial IoT Case Study
Enhancing Sports Impact Simulations with HyperWorks: A Case Study at Loughborough University's STI
The Sports Technology Institute (STI) at Loughborough University, a leading research group in sports engineering, was faced with the challenge of generating complex human surrogate models to simulate sports impact scenarios. These scenarios are crucial for the development and testing of personal protective equipment (PPE) in sports. The human body, with its intricate tissue structures and complex anatomical geometries, is incredibly difficult to replicate accurately. The challenge was further compounded by the need for high-quality meshes that could provide a good description of these complex geometries. The quality of a mesh significantly affects model behaviour, making it a key factor in the research. The institute needed a solution that could handle these complexities and provide accurate, high-quality models for their research.
Download PDF
Mabe’s Continual Performance Improvement of Washing Machines with a Multi-Disciplinary Approach - Altair Industrial IoT Case Study
Mabe’s Continual Performance Improvement of Washing Machines with a Multi-Disciplinary Approach
Mabe, a Mexico-based international appliance company, was faced with the challenge of improving the performance of their washing machines by simulating subsystem interactions. The company aimed to increase the capacity and spin speed of their washing machines while reducing the cost per cubic foot. They also sought to improve the energy and water factors of their machines and reduce the product development cycle time. Mabe had been using Altair technology since 2006 for structural analysis and impact and drop-testing simulations. However, they saw an opportunity for increased value from Altair’s multi-disciplinary approach and aimed to leverage the benefits derived from simulations of ever-increasing fidelity and scope.
Download PDF
Serapid's Innovative Use of Altair SimSolid for Supplier Parts Simulation - Altair Industrial IoT Case Study
Serapid's Innovative Use of Altair SimSolid for Supplier Parts Simulation
Serapid, a company that designs systems for the transfer of heavy loads, often works with dummy geometries of parts from suppliers. These parts, which are to be installed on the platform, are essentially hollow solids. While these dummies are crucial for Serapid to properly size the platform and position the parts, they pose a challenge when simulating the complete structure. The company needs to load the structure with the weights of the installed devices, a process that can be time-consuming and complex. The weight of each part is applied in its center of gravity (COG), which is a remote load application point. This means that the COG of each part needs to be evaluated and spots on the platform where the remote load will be brought to need to be created. This process can be particularly challenging and time-consuming when many devices are installed.
Download PDF
Rapid Development of a Robust, Life-saving Defence Vehicle Module - Altair Industrial IoT Case Study
Rapid Development of a Robust, Life-saving Defence Vehicle Module
Integrated Design and Engineering Solutions (IDES), a Melbourne-based engineering product development and systems integration company, was tasked with a challenging assignment by the Australian Defence Organization (ADO). The project, known as LAND 121 Phase 3A, involved the procurement of around 2,200 Mercedes-Benz G-Wagon light trucks for the Australian Army. One of the variants of these vehicles was intended to be used as a surveillance and reconnaissance (S&R) vehicle. The IDES team was required to design a module for this vehicle that would provide adequate protection for the rear observer in the event of a vehicle rollover. The team decided to build a vehicle rollover protection structure (ROPS) in the form of a tubular roll cage structure. However, the traditional method of developing such a structure, which involves iterative physical testing, was deemed too time, effort, and cost-intensive for the project's tight timeline.
Download PDF
Optimising the COLLAPSECON C-400: A Case Study in IoT and Shipping Logistics - Altair Industrial IoT Case Study
Optimising the COLLAPSECON C-400: A Case Study in IoT and Shipping Logistics
The shipping and logistics industries are responsible for facilitating over 90% of global trade, utilizing an estimated 35 million containers worldwide. However, global trade deficits result in 1 in 5 containers being shipped empty, leading to losses of over $30 billion annually. CEC Systems’ COLLAPSECON® provides an innovative solution to this problem, with a collapsible container design that improves operational efficiency and reduces environmental impact. However, the COLLAPSECON® design faced challenges due to over-engineering to meet industry ISO standards and pass manufacture testing. The units were nearly three times heavier than a standard container, due to the addition of moving parts and unique structural components. The complex geometries used in the design were also incompatible with traditional manufacturing methods, potentially leading to increased manufacturing costs. To optimise the COLLAPSECON® C-400 design for mass production and operational use, CEC Systems partnered with The Singapore Institute of Manufacturing Technology (SIMTech).
Download PDF
Engineering Design Using a Small Autonomous Robot for Student Education at Aichi University Technology - Altair Industrial IoT Case Study
Engineering Design Using a Small Autonomous Robot for Student Education at Aichi University Technology
The importance of practical education for industrial engineering has been gaining recognition globally. Aichi University Technology (AUT) in Japan has been implementing many effective educational programs for students to acquire practical skills and knowledge. Among these, robot designing is one of the most effective for engineering design. As part of this initiative, AUT participated in a demonstration test competition aiming for future Mars exploration - A Rocket Launch for International Student Satellites (ARLISS). The challenge was to design an autonomous robot that could be launched from a rocket, land safely, and then autonomously travel to a specified target. The design process involved the use of computer-aided tools (CAD, CAM, CAE) and the evaluation of the stress in the robot’s structure.
Download PDF
Leveraging Altair FEKO for the Creation of the World’s Smallest TV Antenna - Altair Industrial IoT Case Study
Leveraging Altair FEKO for the Creation of the World’s Smallest TV Antenna
The Universidad Autónoma del Estado de Morelos (UAEM) in Mexico was faced with the challenge of designing low-cost, lightweight antennas for TV and automotive applications. The goal was to make modern day communications, including TV and GPS, more affordable for the masses, particularly in developing countries. The challenge was particularly significant in the context of TV reception, where the successful transmission of signals to remote areas, especially indoors, was often problematic. The traditional solution, a Yagi array antenna, provided a directed beam towards the TV tower, but the team at UAEM sought to develop an antenna that was smaller, lighter, and improved signal stability.
Download PDF
Optimizing Tailor Rolled Blanks Processes with High Performance Computing at Mubea - Altair Industrial IoT Case Study
Optimizing Tailor Rolled Blanks Processes with High Performance Computing at Mubea
Mubea, a global supplier of automotive lightweight components, is the only supplier for Tailor Rolled Blanks (TRB), a cold rolling process that tailors sheet thicknesses to meet the needs of an automotive Body in White (BIW) structure. The company supports its customers by identifying lightweight potentials in a vehicle, designing proper tailor rolled parts, and conducting full light weight studies with full vehicle models with their own CAE resources. However, the design optimization of Tailor Rolled Blanks is normally based on explicit dynamic simulations, also known as crash simulations. Due to the large size of these crash models, a single simulation run takes between one to twelve hours. Exploring different design concepts leads to various simulation runs and potential optimization, but due to the long run times, this becomes prohibitive and can easily exceed a project’s allotted time frame, which decreases innovations.
Download PDF
Digital Twin for Sustainable Energy: Enhancing Fusion Powerplant's Lifetime Value - Altair Industrial IoT Case Study
Digital Twin for Sustainable Energy: Enhancing Fusion Powerplant's Lifetime Value
Assystem, an international engineering and digital services group, was contracted by the United Kingdom Atomic Energy Authority (UKAEA) to develop physics-based digital twins for their operational fusion powerplants. The challenge was that fusion powerplants required complex digital simulation models during the design assessment phase. The inspection and maintenance intervals and total life of these powerplants were defined based on the expected loading on the as-designed model, which often differed from the actual loads the plant was subjected to. This discrepancy provided a scope for programs aimed at improving the plant’s lifetime value or quantifying the effects of higher-than-expected usage. Assystem wanted to leverage the expensive design models to create a digital twin by inputting the sensor data that was livestreamed from the plant. This would help engineers understand the plant’s structural integrity and further optimize inspection and maintenance schedules.
Download PDF
Building an Efficient CAE Simulation Platform at the Pan Asia Automotive Technology Center - Altair Industrial IoT Case Study
Building an Efficient CAE Simulation Platform at the Pan Asia Automotive Technology Center
The Pan Asia Automotive Technology Center (PATAC), a joint venture between General Motors and SAIC Motor, was facing challenges in managing its computer-aided engineering (CAE) simulation technology. As PATAC's analytical technology improved, the volume of its CAE analysis tasks increased, and the subject and application fields expanded. Engineers needed a system to store, reuse, and share models, and synchronize iterative design schemes in different simulation fields for collaboration. Additionally, PATAC was promoting the digital transformation of its research and development system. The company needed a simulation management platform to manage daily analysis work, structure CAE data systematically, improve visualization of results and processes, and track analysis cases more easily.
Download PDF
IBERIABANK Streamlines Reconciliation Process with Altair - Altair Industrial IoT Case Study
IBERIABANK Streamlines Reconciliation Process with Altair
IBERIABANK, a financial institution with a growing footprint across the southeast U.S., was facing a significant challenge with its general ledger account reconciliation process. The bank, which manages approximately 20 billion dollars in assets, had to reconcile millions of rows in the general ledger, a process that was laborious and time-consuming. Some accounts were reconciled monthly, others daily, but regardless of the frequency, the process was a drain on resources. As the bank continued to grow, the need for an automated reconciliation process became increasingly clear. The bank's Controller, Denny Pagnelli, highlighted the issue, noting the 19 gigabytes of data that needed to be reconciled.
Download PDF
Automotive Parts Supplier Enhances Efficiency and Accuracy with Altair® Monarch® - Altair Industrial IoT Case Study
Automotive Parts Supplier Enhances Efficiency and Accuracy with Altair® Monarch®
A leading global automotive parts supplier, with over 300 manufacturing centers and close to 90 product development, engineering and sales centers in 30 countries, faced a significant challenge when it expanded its operations to a new facility in the southcentral United States. The company's business model is based on invoicing against the cost of each component used in the manufacturing of a final product. On average, over 100 different components were used in each finished unit, with the number often exceeding 250 for custom variations. The supplier needed to validate, reconcile, and report on all the components used to manufacture the final unit for the automaker. Poor inventory controls and inaccurate supply chain reporting were impacting the supplier’s operational costs and revenue numbers. Additionally, the automaker required that each component used in the final unit be mapped to the Vehicle Identification Number (VIN) of the fully manufactured vehicle. The number of different data sources and formats used in this process demanded a solution that was easy to use, could extract needed information from disparate data sources, and ensure accurate, timely, flexible reporting and invoicing.
Download PDF
Automating Crankshaft Modeling for BMW Motorrad Using Altair SimLab™ - Altair Industrial IoT Case Study
Automating Crankshaft Modeling for BMW Motorrad Using Altair SimLab™
BMW Motorrad, the motorcycle division of BMW, was facing a challenge with the crankshaft model building process. The process was previously outsourced to external providers, with the average time taken for a model being between 1-2 weeks depending on the engine type. The organization required an annual estimate of new crankshaft models to be produced for budgetary decisions. However, the actual production of the models often fell short of estimates due to varying constraints on the part of the suppliers. Additionally, for any additional crankshaft models when required, the overall order processing time could be lengthy. To facilitate effective budgetary planning and decision-making, accuracy in model production forecasts with a high degree of confidence became necessary.
Download PDF
DSA Streamlines Marine Hydrodynamics Analyses with HyperWorks, ProteusDS and ShipMo3D - Altair Industrial IoT Case Study
DSA Streamlines Marine Hydrodynamics Analyses with HyperWorks, ProteusDS and ShipMo3D
DSA, an ocean engineering consultancy and software company, faced a significant challenge in creating high-quality hydrodynamic meshes and models for ship and marine structures. The task of creating high-quality meshes is a complex one in CAD software, as the mesh often isn't well conditioned for hydrodynamic solutions which require a closed surface for resolving hydrodynamic effects such as nonlinear hydrostatics and BEM solution. To build an accurate ship hydrodynamic model, ShipMo3D, one of DSA's software, requires the development of a mesh of the vessel hull. This could be achieved either through the creation of hull lines or through importing an OBJ mesh file created using third-party software. However, both these methods were time-consuming and often resulted in less than optimal meshes.
Download PDF

Contact us

Let's talk!
* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that AGP may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from AGP.
Submit

Thank you for your message!
We will contact you soon.