Case Studies.
Add Case Study
Our Case Study database tracks 18,927 case studies in the global enterprise technology ecosystem.
Filters allow you to explore case studies quickly and efficiently.
Download Excel
Filters
-
(151)
- (127)
- (9)
- (4)
- View all
-
(136)
- (24)
- (18)
- (17)
- View all
-
(58)
- (27)
- (17)
- (7)
- View all
-
(49)
- (41)
- (3)
- (2)
- View all
-
(41)
- (35)
- (4)
- (2)
- View all
- View all 15 Technologies
- (146)
- (84)
- (62)
- (44)
- (42)
- View all 37 Industries
- (330)
- (126)
- (31)
- (31)
- (21)
- View all 9 Functional Areas
- (77)
- (69)
- (65)
- (65)
- (46)
- View all 73 Use Cases
- (152)
- (138)
- (40)
- (39)
- (13)
- View all 9 Services
- (382)
![]() |
Schneider Electric's Multi-Disciplinary System Design Approach for Developing Miniature Circuit Breakers
Schneider Electric, a global leader in power management and automation systems, faced a challenge when they identified a new market opportunity for their circuit breaker business in a region where they had no presence. The challenge was to adapt an existing standard design for a circuit breaker’s automatic recloser to be used under different operating conditions, including different voltage levels and types (DC rather than AC), and varying temperatures. The product variant had to meet all-new specifications and the window of opportunity was short, requiring the development of a viable product within only four months. The challenge was further compounded by the need to maintain Schneider Electric's high product standards, superior customer satisfaction, and an excellent corporate reputation for providing products that perform with high reliability.
|
|
|
![]() |
Optimizing Aluminum Sand Casting Process with IoT: A Case Study on Woodland/Alloy Casting, Inc.
Woodland/Alloy Casting, Inc., a full-service aluminum casting provider, faced a significant challenge in transitioning a marine exhaust housing part from a lost foam casting to a sand casting. The transition required an updated gating system to maintain the integrity of the part. The company aimed to produce a sound casting while keeping ingates and risers to a minimum, which would allow for a low yield and reduce the time needed to remove the rigging. The challenge was to design a new gating system that would feed the casting from the bottom flange and push the metal to the top of the casting. The traditional approach to testing the new gating system would have involved numerous costly and time-consuming tests, requiring a number of molds to determine the outcome of the new gating system.
|
|
|
![]() |
Exploring the Potential of Topology Optimization and Additive Manufacturing in Architecture
The case study revolves around the exploration of the potential benefits of combining topology optimization and additive manufacturing in architectural projects. While this combination is common in industries like automotive or aerospace, it is rarely used in architecture. The challenge was to investigate the potential of this symbiosis for architectural projects. Bayu Prayudhi, an architectural student of the University of Delft, took up this challenge and re-designed an existing architectural project, the outdoor canopy at Baku international airport in Azerbaijan, originally designed by ARUP. The goal was to include topology optimization upfront in the design process and adapt the design for 3D printing. The challenge also involved dealing with boundary conditions such as costs, lead times, and technological limits while striving to combine function, shape, and innovation.
|
|
|
![]() |
MasterCard Enhances Customer Experience with Self-Service Data Preparation
MasterCard, a global technology company in the payments industry, was facing a significant challenge in its business financial support team. The team of 13 was spending between 40 to 80 hours per week manually reconciling transactions and cash from reports that resided on the company’s mainframe. This process involved printing 20-30 individual, multi-page reports daily and hand-keying data into Excel for reconciliation. The task was not only time-consuming but also inefficient, especially considering the company's rapid growth and expanding product offerings. Derek Madison, Leader of Business Financial Support at MasterCard, was tasked with identifying new ways to increase efficiency and improve MasterCard processes.
|
|
|
![]() |
Socomec: Delivering Leading-Edge IoT Solutions with Altair
Socomec, a century-old, France-based company specializing in innovative power solutions, was seeking to create additional value for its customers by implementing increasingly complex and sophisticated power setups. The company's specialty lies in providing low-voltage energy installations for critical energy buildings like datacenters, solar plants, utilities, and hospitals. However, simply meeting customers’ power needs wasn’t enough for Socomec. The company aimed to provide solutions that would enable customers to elevate their businesses to the next level of performance and efficiency. This required the implementation of intricate power setups and services, involving detailed processes such as governance, project management, change management, architecture, integration, and cybersecurity. To achieve this, Socomec decided to collaborate with an open ecosystem of experts and partners, allowing it to focus internal resources on its core competencies.
|
|
|
Need Expert Help? Connect with our technical experts to get personalized advice and solutions tailored to your needs. |
|||
![]() |
Unilever's Journey to Optimizing Packaging Designs & Reducing Prototype Costs with IoT
Unilever, a global leader in the consumer goods industry, was seeking ways to maintain its innovative edge in the male grooming market. The company was particularly focused on differentiating its Lynx (Axe) brand from competitors. The challenge was to adopt a simulation and analysis approach for designing a new deodorant packaging concept. However, Unilever lacked an in-house team of analysis engineers and needed a development partner to assist with the design and testing of the new can.
|
|
|
![]() |
Optimizing Sinter Cooler Charging System with Altair® EDEM™: A Case Study on ArcelorMittal
ArcelorMittal, the world’s leading steel and mining company, faced a challenge in optimizing a large-scale charging chute of a sinter cooler plant in Fos-Sur-Mer. The objective was to improve the reliability and efficiency of the device by identifying a better design that enhanced granular segregation, abrasion, and mechanical resistance. The process of charging hot material into the sinter cooler often led to particle segregation, causing severe problems such as fire issues on conveyor belts and sinter quality issues. The R&D team needed to investigate these segregation patterns, particularly the impact of particle sizes and the effect of the filling ratio on the segregation patterns in the trolleys of the sinter strand. However, simulating granular flows in a large system compared to the particle size was complex and time-consuming. The team needed a modelling strategy that balanced computational efficiency and physical realism.
|
|
|
![]() |
Digital Twin Technology Reduces Waste and Enhances Efficiency in Automotive Manufacturing
Patrone and Mongiello, a leading tier-one automotive supplier based in Italy, was seeking a solution to enhance the monitoring and control of its sheet metal forming process. The company aimed to improve product quality and reduce production waste. The solution needed to account for sheet metal properties such as stress, strain, and elasticity, and cover equipment operating conditions such as pad force and die friction. The challenge was to find a solution that could accurately simulate the company's existing sheet metal forming process, including machine press and sheet-metal behavior, system variables, and operating conditions.
|
|
|
![]() |
TEAMTAO: Revolutionizing Deep-Sea Exploration with IoT and Simulation
TEAMTAO, a collaboration of Newcastle University, SMD (Soil Machine Dynamics Ltd), and UK Research and Innovation, was competing in the Shell Ocean Discovery competition, a global challenge to advance deep-sea exploration using autonomous subsea drones. The goal was to develop underwater robots that could fully map 500 km2 of seafloor at a 4 km depth in less than 24 hours with no human intervention. TEAMTAO’s unique concept was to develop a swarm of these devices all communicating with each other and sharing information. The compact autonomous platform consisted of the BEMs (Bathypelagic Excursion Module), a swarm of vertically swimming AUVs and the surface vessel. It also had a 'vending machine' style autonomous surface catamaran that was responsible for the horizontal transit, data handling, communication, and recharging of the BEMs. The challenge was to test the devices in a range of different scenarios at deep depths without risking the prototype.
|
|
|
Case Study missing? Start adding your own! Register with your work email and create a new case study profile for your business. |
|||
![]() |
Reducing Medical Stent Stress by 71%: A Medtronic Case Study
Medtronic, a global leader in medical device manufacturing, was facing a significant challenge in the design and validation process of a new medical stent. The stent, an expandable mesh inserted into a patient's artery to keep it open, required meticulous design and rigorous testing. Traditional methods of computer-aided engineering (CAE) and virtual simulation were not fully utilized within the industry due to the slow verification process for often microscopic components. Medtronic was seeking a way to not only improve the design of the stent but also to speed up the validation process, ensuring a faster time-to-market and better performing products.
|
|
|
![]() |
A Vision of Tomorrow's Architecture: Designing the LAVA Bionic Tower
The Bionic Tower, a high-rise tower proposal in Abu Dhabi designed by the Laboratory for Visionary Architecture (LAVA), is a symbol of LAVA’s visions of tomorrow’s architecture. The design unifies nature’s organization system with advanced computing technology, to achieve an architectural expression of ultimate lightness, efficiency, and sophistication. The structural expression of this architecture is a proposed organic exoskeleton which acts to structurally stabilize the building. The major challenge was to generate a unique structural form that is lightweight and organic in appearance in order to achieve the free-form exoskeleton structure.
|
|
|
![]() |
Revolutionizing Automotive Design: A Case Study on Technische Universität Dresden's Formula Student Team
The Technische Universität Dresden's Formula Student Team faced the challenge of designing and manufacturing a new Formula Student steering column mount. The existing steering column mount was complex, consisting of four different areas at different angles, making it difficult to produce with a 5-axis milling machine. The solution to produce this part consisted of four different milled aluminum parts that were all bolted together. The team was looking for a way to simplify the design and production process, reduce the weight of the part, and improve its performance characteristics.
|
|
|
![]() |
Hyundai Mobis Leverages Feko for Enhanced EMC Analysis and Shielding Effectiveness Simulation
Hyundai MOBIS, a leading producer of core automotive components, was facing challenges in improving the efficiency and reducing the time taken in the electromagnetic compatibility (EMC) analysis process. The company uses shielding enclosures to protect against external fields and electromagnetic (EM) leakage from electronic products. However, the integrity of these enclosures was often compromised by apertures and slots used for visibility, ventilation, or access to interior components. These openings allowed exterior electric and magnetic fields to penetrate into the interior space, where they could couple to Printed Circuit Boards (PCBs), inducing currents and voltages on interior conductors. Therefore, it was crucial for Hyundai MOBIS to understand the EM shielding effectiveness of shielding enclosures in the presence of these apertures.
|
|
|
![]() |
Application of HyperWorks in Developing Human Body Models for Vehicle Crash Assessment
The University of Michigan Transportation Research Institute (UMTRI) was faced with the challenge of developing finite-element human body models that account for the effects of age, gender, and obesity on injury risk in vehicle crashes. The existing injury assessment tools, including finite-element human models, did not account for different body shape and composition variations among the population. This was a significant issue as analysis of crash injury databases by UMTRI showed that occupant characteristics, such as age, sex, and body mass index (BMI) significantly affect the risks for thoracic and lower extremity injuries in vehicle crashes. The challenge was to broaden vehicle crash protection to encompass all vehicle occupants by developing detailed, parametric-based finite element human body models that represent a wide range of human attributes.
|
|
|
![]() |
Solid Hex Meshing the Human Lumbar Spine: A Case Study on NuVasive Inc.
The challenge faced by NuVasive Inc., a medical device company specializing in the surgical treatment of spine disorders, was to predict how a device will perform while ensuring they are safe and effective, before a single prototype is built. The company wanted to leverage computational modeling and simulation to eliminate bad ideas and refine the good ones long before they leave the drawing board. The objective of this project was to take anatomic geometry obtained from a CT scan and develop a finite element model that could evaluate the biomechanical stability of different interbody cage footprints that is typically performed using cadaveric testing. Since bone geometry is unique to each individual, and bones are not symmetric, a manual hexahedral (HEXA) meshing approach needed to be established in order to build models with a repeatable process.
|
|
|
![]() |
The SKA Radio Telescope: Leveraging IoT for a Better Understanding of the Universe
The Square Kilometer Array (SKA) project, led by the SKA Organization from Jodrell Bank Observatory in the UK, aims to challenge Einstein’s seminal theory of relativity, study the formation of the first stars and galaxies, explore dark energy and vast magnetic fields in the cosmos, and answer the age-old question, 'Are we alone in the Universe?' The SKA will be a collection of various types of antennas, including large dish reflectors and aperture antennas, spread over large distances and working together as an interferometric array. The SKA will be 10,000 times faster and 50 times more sensitive than any existing radio telescope. However, the proximity of adjacent antennas and other systems can result in unwanted inter-coupling, even from low-level emissions, due to currents on cables. This inter-coupling needs to be minimized, which requires identifying the coupling mechanisms and applying measures to improve isolation. On-site radio frequency (RF) coupling investigations are required, but they can only be done after installation. During the design, planning, and installation stages, characterization of the electromagnetic (EM) environment has to be done on scale models and through simulations.
|
|
|
![]() |
INTECH DMLS Achieves 27% Weight Reduction in 3D Printed Satellite Component using Altair Inspire™ and OptiStruct™
INTECH DMLS, a leader in the field of metal-based DMLS 3D printing in India, was faced with the challenge of reducing the weight of a camera holder to be placed on a satellite. The company needed to get the weight right the first time, eliminating the need for prototype iterations. This was a unique challenge as the company did not have the luxury of making errors and iterating. The team had to focus on product design optimization, analysis, mechanical integrity, heat transfer, and other criteria while developing Bionic, Dynamic, and Cellular structures and carrying out lightweight analysis for their products. The camera holder had to be lightweight but still withstand a predefined load and assist in the smooth functioning of the satellite. The customer also wanted the holder to be of a specific weight - not too light nor too heavy - and stiff enough to withstand dynamic load.
|
|
|
![]() |
Mando Softtech India Enhances Simulation Accuracy with Altair HyperWorks
Mando Softtech India, a leading manufacturer of automotive component systems, faced significant challenges in maintaining the high performance and quality standards of their products. The company needed to conduct in-depth analysis of their product designs to identify and rectify even the smallest design errors early in the design cycle. The automotive industry being highly competitive and price sensitive, it was crucial for Mando India to compress their design and development cycle time and develop products with utmost cost efficiency without compromising on quality. The company had invested heavily in setting up the right infrastructure in-house with advanced product design, analysis, and simulation tools. However, they faced complex problems such as conducting accurate Hexameshing, generating 2D Meshing and 3D Meshing, and conducting Thermal simulation for ECU casing development. They were also struggling with Tetra and Volume tetra meshing and needed a reliable tool for structural and non-linear analysis.
|
|
|
![]() |
Characterizing the Murchison Widefield Array Beam Pattern with FEKO
The Murchison Widefield Array (MWA) radio telescope, a precursor to the Square Kilometer Array (SKA), was facing a challenge in characterizing its beam pattern. The beam pattern of the array could be determined using measurement, but this method was time-consuming and required specialized equipment. Therefore, a simulation-based approach was deemed the most practical. The beam pattern is a function of each of the 16 array elements as well as the operational frequency of the system. To model the pattern, each of the array elements had to be excited independently, and at different frequencies within the operation band. The full array beam pattern could then be modeled at an arbitrary steering direction. Previously, the simulation of the beam pattern was conducted using analytical models, but a more rigorous approach was needed where the full array geometry was simulated.
|
|
|
![]() |
Surrogate Models for Antenna Placement on Large Platforms: A Case Study
The Institute of High Performance Computing (IHPC) was faced with the challenge of developing cost-effective and innovative approaches for modelling, diagnosing and solving electromagnetic compatibility (EMC) problems. The complexity of the electromagnetic (EM) system and environment was ever-increasing, and the institute was tasked with handling electrically-large and multi-scale EM problems such as the antenna placement on large platforms. Additionally, they had to deal with multiphysics problems such as the electrical-thermal-mechanical analysis of composite materials. In a specific project, the institute needed an efficient modelling tool to identify optimum antenna positions and minimize interference between various antennas on electrically large platforms. The geometric model of a proprietary antenna was difficult to obtain from the vendor, necessitating the development of a surrogate model to represent it in the antenna placement simulations on the platform. The antenna-on-platform problem was both electrically-large and multi-scale, and could no longer be practically solved with a fullwave only method.
|
|
|
![]() |
Faraone's Innovative Approach to Architectural Component Design with IoT
Faraone SRL, an Italian provider of architectural components, was faced with the challenge of designing a new full glass balustrade with a special aluminum profile at the bottom to hold the glass structure in place. The goal was to save on development time, material, and production costs, while increasing the stiffness of the aluminum profile. The development engineers at Faraone needed a new design strategy and special optimization tools to help reach these goals. The design of architectural components such as a balustrade can be challenging, since the design does not only have to look good, it also has to meet several safety requirements and standards. In addition, all designs have to be developed within the shortest time possible. To meet these challenges the engineers, architects and designers at Faraone are always looking for solutions that can reduce their design and testing cycles.
|
|
|
![]() |
GE Aviation’s Systems Business Leverages Flow Simulator for Aircraft Backup Generator Modelling
GE Aviation’s Systems business, a unit that designs and produces systems critical to the interface between jet engines and the airframe, was tasked with providing a backup generator (BUG) for a new aircraft. This generator was to provide electrical power in the event of multiple failures of other systems. The BUG had to be mounted onto a newly designed engine to receive mechanical power, but maintain independence from the engine to ensure functionality. It had its own oil network, pump, and sump to provide lubrication and cooling to the electromagnetic components and bearings in the generator. The lubrication system relied on a gravity drain to return the oil from a bearing cavity to the onboard sump where the oil pump was located. The team needed to ensure that the drain was adequately sized to allow for passage of the worst-case level of oil flow so that oil does not build up and cause excess heat generation or any other sinister effects within the bearings. Due to the constraints on size and program timing, an analytical approach was desired to determine the capability of the current drainage passage network and the minimum size that will be required.
|
|
|
![]() |
Philips Leverages IoT for Efficient Product Conceptualization and Design
Philips, a leading health technology company, was faced with the challenge of visualizing new product concepts quickly and efficiently. The goal was to work collaboratively with design colleagues and the engineering department to share feedback, understand challenges, and ultimately conceptualize final products. The company needed a tool that could be used by all members of the team to create consistency, facilitate easy file transfer/handoff with design peers and engineering, and increase overall team speed and efficiency. The existing tools were not meeting these requirements, leading to a search for a new software solution.
|
|
|
![]() |
Optimization of Photovoltaic Mounting Structures: Material and Cost Savings
Thesan, an Italian company specializing in the design, manufacture, and distribution of mounting structures for photovoltaic plants, was faced with the challenge of optimizing the mounting structure of a medium-sized PV field with a power of 5 MW. The field consisted of 1700 arrays, each mounted on two poles, with each individual assembled structure weighing about 60 kg. The total weight of the mounted structures on the field was 204 tons of steel, with material costs of about 170,000 Euro. A weight reduction of only 5 kg per structure would lead to significant savings in material and cost. The structure was composed of two main parts, a steel driven pile and an aluminum rafter, with the weight reduction of the more costly aluminum parts being crucial. Another significant factor for cost savings was transportation, as PV fields are often built in remote areas with poor infrastructure. Lighter structures would not only mean less material costs in production, but also lower transportation efforts and costs. However, the new, lighter weight structures still had to be able to carry all occurring loads from natural causes such as wind or snow and the dead load of the structure, ensuring perfect quality, consistent stability and the requested stiffness of the structures.
|
|
|
![]() |
SimData Manager: Centralizing and Standardizing CAE Data for Global Collaboration
The case study highlights three main challenges faced by companies in managing their Computer-Aided Engineering (CAE) data. The first challenge is the need for a central location where all CAE users can manage their data within an enterprise for easy retrieval and full traceability from CAD to CAE, and all versions of CAE to the final report. The second challenge is the lack of standardization in methods used by different engineers, the loss of knowledge when employees leave, and the manual nature of the processes. The third challenge is the difficulty in tracking versions of CAD and CAE models and distributing project data globally, especially for companies with multiple development organizations in different geographic locations.
|
|
|
![]() |
Revolutionizing Motorcycle Design with 3D Printing: The Light Rider Case Study
Airbus, one of the largest aircraft manufacturers, has always been keen on weight saving as it directly impacts fuel consumption, cost, and carbon emissions. To further explore advanced manufacturing technologies, Airbus set up APWorks in 2013, a subsidiary dedicated to design, materials, and 3D printing. However, due to the confidential nature of customer projects, APWorks found it challenging to tangibly showcase the possibilities of parts designed specifically for Additive Layer Manufacturing (ALM). They needed a project that would allow them to demonstrate the potential of ALM, and decided on creating an electric motorcycle. The challenge was to design and produce a motorcycle that was significantly lighter than traditional models, while maintaining strength and durability.
|
|
|
![]() |
Improving Crash Simulations with High-Performance Computing: A Case Study of PSA Peugeot Citroën
PSA Peugeot Citroën, the second largest carmaker in Europe, faced a significant challenge in meeting increasingly stringent automotive regulations that demanded lower CO2 emission levels. This required the carmaker to decrease the design structure mass by using materials with a higher strength-to-weight ratio. However, introducing new materials into the design process was complex; design rules and numerical tools had to evolve to understand the characteristics of these materials and evaluate potential failures. There was a risk of delaying production awaiting reliable design direction from simulation, or having to redesign a part late in the design cycle. Furthermore, due to the large, nonlinear deformations involved in simulating crash or rupture events, proper material failure criteria were essential to results accuracy. To improve its knowledge in assessing predictive rupture models, and to identify a viable solution for testing ruptures on a massive scale, PSA collaborated with Altair, Ecole Polytechnique Laboratoire de Mécanique des Solides (LMS) and PRACE.
|
|
|
![]() |
Cleveland Golf's Product Innovation Through Simulation and Optimization Using HyperWorks
Cleveland Golf, a leading golf club manufacturer, faced the challenge of meeting changing regulations for golf club design while consistently introducing new products that are precisely engineered for shape, feel, balance, sound, and performance. The United States Golf Association (USGA) imposes limitations on golf club heads, including the size of the grooves in wedges and irons, the dimensions of the head, and the permitted coefficient of restitution (COR) – or springiness – that is allowed in clubs. As clubs have improved, they've reached these limits and have the capability to go beyond them. This posed a significant challenge as Cleveland Golf needed to figure out how to continue to improve clubs without exceeding these limits. Additionally, the USGA recently changed the rules specifying groove size, impacting how future clubs will be designed. From an economic standpoint, consumers were not buying as many clubs as they did in the past, so Cleveland Golf needed to create more new and innovative products, not just variations on existing clubs.
|
|
|
![]() |
Ford Enhances Manufacturing Efficiency with Altair Knowledge Studio
Sheet metal stamping is a crucial process in the automotive manufacturing industry, with a variety of tool, die, and process combinations used to create a diverse range of components. Traditionally, identifying the optimal stamping process for a specific part design has been a labor-intensive and time-consuming task, heavily reliant on the knowledge and skill level of the stamping engineer. Ford Mexico sought to address this issue by documenting successful metal stamping production runs over a five-year period. The goal was to capture in-house domain knowledge and best practices to expedite the selection of the best stamping process for future production runs. This would enable increased plant efficiency and part quality, reduction of scrap material, and the ability to rapidly train new personnel. However, the challenge lay in the growing design complexity, non-conventional material types, and numerous process combinations that could challenge even the most experienced process engineer, necessitating a labor and material intensive trial-and-error prove-out process.
|
|
|
![]() |
Innovative Grab Design for Faster Unloading: A Case Study on Nemag and TU Delft
Nemag BV, a manufacturer of grabs for handling bulk materials, faced a challenge in developing a new generation of grabs for iron ore that were faster and lighter. The traditional process of developing grabs involved building physical prototypes, which was expensive, time-consuming, and limiting. It was difficult to predict the performance of a new design, especially the interaction between the bulk material and the grab, which heavily influences the performance. The traditional methods were not sufficient to understand what happens inside the grab. Therefore, a virtual prototyping approach was developed at TU Delft to model iron ore pellets in interaction with grabs.
|
|