Case Studies.
Add Case Study
Our Case Study database tracks 22,657 case studies in the global enterprise technology ecosystem.
Filters allow you to explore case studies quickly and efficiently.
Download Excel
Filters
-
(151)
- (127)
- (9)
- (4)
- View all
-
(136)
- (24)
- (18)
- (17)
- View all
-
(58)
- (27)
- (17)
- (7)
- View all
-
(49)
- (41)
- (3)
- (2)
- View all
-
(41)
- (35)
- (4)
- (2)
- View all
- View all 15 Technologies
- (146)
- (84)
- (62)
- (44)
- (42)
- View all 37 Industries
- (330)
- (126)
- (31)
- (31)
- (21)
- View all 9 Functional Areas
- (77)
- (69)
- (65)
- (65)
- (46)
- View all 73 Use Cases
- (152)
- (138)
- (40)
- (39)
- (13)
- View all 9 Services
- (382)
Selected Filters
![]() |
Implementing CAE into the Design Process for Composite Tennis Racquets at Wilson Sporting Goods
Wilson Sporting Goods Co., a leading manufacturer of high-performance sports equipment, was looking to reduce design cycle time and enhance product value in the development of their tennis racquet designs. The company wanted to take advantage of simulation, automation, and optimization technologies to achieve this goal. Wilson Labs, the innovation hub at Wilson, was particularly interested in exploring developments in Finite Element Analysis (FEA) for laminated composites that could be applied to their composite tennis racquet lines. They aimed to accomplish something unique or organic looking in terms of geometry. Until this point, FEA for composites had been almost non-existent in the racquet industry. Recognizing its potential as a better tool for lay-up design and optimization for weight, strength, stiffness, and simplicity, Wilson decided to take a leading role in employing this technology in the industry.
|
|
|
![]() |
FEKO's Role in Electromagnetic Protection Design for Civil Aircrafts: A Case Study of COMAC
The Commercial Aircraft Corporation of China, Ltd. (COMAC) was faced with the challenge of designing the country’s first homegrown large passenger aircraft. With the rapid development of science and technology, more airborne radio equipment was being installed in aircrafts, leading to a lot of antennas with a very wide frequency range. However, due to the limited length of the aircraft itself, there was not much space for antenna placement. Antenna pattern distortion caused by the aircraft body and inter-antenna electromagnetic compatibility were the highlighted concerns. During take-off, landing or flight, an aircraft may be irradiated by highpower radio transceiver from ground, air or ships at sea, causing electromagnetic environmental problems. These electromagnetic waves, called high-intensity Radiated Fields (HIRF), can induce electromagnetic fields around airborne equipment or induce high-frequency current on interconnected cables, resulting in function disorder or loss of key/critical equipment, endangering the aircraft’s ability to fly safely and land. Another problem was electromagnetic compatibility (EMC), an interdisciplinary gradually built with the growing complexity of electronic equipments and systems. A comprehensive electromagnetic simulation and analysis tool was urgently needed to eliminate the personnel and equipment hazards caused by electromagnetic radiation fields and to improve the safety and reliability for aircrafts in complex electromagnetic environments.
|
|
|
![]() |
Streamlining Development Process with FE-Simulation: A Sigma Connectivity Case Study
Sigma Connectivity, a leading development service organization based in Sweden, was faced with the challenge of handling various simulation disciplines such as bending, torsion, connector stability impact, and thermal heating. The development of connectivity solutions required a diverse set of application areas to be investigated. Products such as mobile phones had to pass certain tests regarding these factors. Instead of building expensive prototypes for physical testing, Sigma Connectivity aimed to save time and costs by creating a virtual prototype and using simulation early in the product development process. However, to address all needed simulation disciplines, the company had to invest in software solutions, which often came from different software vendors. This led to increased licensing efforts and costs. Sigma Connectivity sought to decrease the number of software vendors while at least keeping or ideally increasing their ability to address the needed simulation disciplines.
|
|
|
![]() |
Leveraging HyperWorks for Advanced Human Body Models in Vehicle Crash Simulations
Wake Forest Baptist Medical Center, a leading research university in biomedical sciences and bioengineering, was tasked with developing highly detailed, finite-element human body models for vehicle crash simulation. The Center of Injury Biomechanics (CIB) at the university was to investigate injury mechanisms following trauma resulting from vehicle crashes to develop a greater understanding of human tolerance to injury and to engineer enhanced safety countermeasures. The challenge was to mathematically quantify fundamental human body organs, skeletal members, and body extremities that are subject to trauma. The resulting medical image data had to accurately represent a range of vehicle occupants: adults (male & female), children (3-6 years old), and infants. The human body data then had to be discretized to generate accurate finite element (FE) models of the varied human body systems. These models then had to be integrated to formulate a model of the entire human body, which then had to be validated in vehicle crashworthiness simulations with occupant and pedestrian impact conditions.
|
|
|
![]() |
Structural Optimization of Concrete Shells in Seismic Areas: A Case Study
The Form Finding Lab at Princeton University was faced with the challenge of designing expressive structures that can safely be employed in seismic areas. The focus was on shell structures, which are thin, curved, and typically large span structures made out of a wide range of materials ranging from steel and glass, to concrete and even bricks or mud. These structures have empirically shown their excellent performance during earthquakes, as exemplified by the undamaged survival of the shells by the acclaimed shell builder Félix Candela during the great 1985 Mexico City earthquake. However, powerful computational tools were needed to analyze the behavior of these structures under earthquake loading. The researchers needed to investigate the effects of a shell’s shape on a buildings’ performance during an earthquake and to simulate the influence of thickness variations on the response due to shaking caused by the earthquake.
|
|
|
![]() |
PBS Works Suite: Enhancing Workload Management at The University of Nottingham
The University of Nottingham, a world-class institution, is home to over 43,000 students and more than 100 research groups. The University's high-performance computing (HPC) facility supports research in various fields such as Science, Medicine, and Engineering. However, the University faced a challenge in managing the diverse computational workload efficiently. The HPC Service Manager, Dr. Colin Bannister, was keen on maximizing the benefits from the University's investment in HPC equipment. The University needed a powerful, flexible workload management suite that could ensure efficiency, usability, and performance. The desired system should enable efficient scheduling of computational workload, monitor and analyze workload, provide an easy-to-use interface, and produce straightforward management reports.
|
|
|
![]() |
Indian Engineering Institute CoEP's CAE Optimization Center Employs Altair HyperWorks
The College of Engineering, Pune (CoEP) recognized the need to keep pace with the rapidly evolving field of engineering innovation. The institute understood that to maintain its national ranking and provide its students with the best career opportunities, it needed to align its education with the latest industry technologies. The challenge was to create an environment where both teachers and students could leverage state-of-the-art engineering technologies to meet contemporary market requirements. To achieve this, CoEP established the CAE-Optimization Lab. The next challenge was to decide which tools would best meet the center's needs while ensuring the lab's self-sustaining operation.
|
|
|
![]() |
Haier's Innovative Use of Altair HyperWorks to Eliminate Drop Damage in Air Conditioners
Haier Group, a global leader in home appliances and consumer electronics, faced a significant challenge with its air conditioners. Despite being known for quality products, the air conditioners were frequently damaged during transportation, leading to increased costs and delivery delays. The company attempted to enhance the structure of its air conditioners and packaging to make them more resistant to drop damage by conducting physical drop tests. However, these tests significantly escalated the research-and-development costs and consumed an extraordinary amount of time. Moreover, the engineers could not easily observe the damage process as the collision between the product and the ground was an instantaneous event. They could only view the outcome but not the strains and shape changes during the fractions of seconds in which they happened. Consequently, Haier considered using excessive packaging materials, but the overall design strength of the package was insufficient.
|
|
|
![]() |
Enhancing Race Car Engine Performance with AcuSolve: A Prodrive Case Study
Prodrive, a leading motorsport and technology business, was faced with the challenge of optimizing the performance of race car engines within a compressed timeframe. The main target was to analyze and improve the fluid flow within the water jacket of Aston Martin Racing engines and achieve reliable results quickly. The task was complicated by the need to solve several iterations of a model with complex geometry, and the work was to be done by relatively inexperienced users. The complexity and level of detail of the model, due to the cavities of the casting inside the engine head and the cylinder block, added to the challenge. Furthermore, Prodrive's simulation capabilities were limited by computer hardware, necessitating a solution that could maximize processing power without increasing license costs.
|
|
|
![]() |
Gulplug: Revolutionizing the Charging Industry with Altair's Startup Program
Gulplug, a French startup, was faced with the challenge of creating an innovative, automatically self-plugging, magnetic-based charging solution for electric vehicles. As a spin-off of Schneider Electric Group, Gulplug aimed to revolutionize plug and charging technology used in today's electric and hybrid vehicles. However, as a startup, they had limited funds and spending a large portion of their budget on software was not feasible. Furthermore, the company was also looking for simulation tools to predict and improve the performance of their system by creating and analyzing virtual models. The challenge was not only to develop a new charging solution but also to do so in a cost-effective manner without compromising on the quality and efficiency of the product.
|
|
|
![]() |
Standardization of Model Building Process with Meshing and Weld Creation Automation at F.tech R&D North America
F.tech R&D North America, a Tier-1 automotive systems supplier, was facing challenges in standardizing their model building process with meshing and different types of weld creation automation. The complexities in vehicle design and development, including the cost of prototypes, compliance with safety standards, and emissions, posed many challenges for the engineers. The Computer Aided Engineering (CAE) team at F.tech R&D North America was struggling with tedious tasks related to model build and geometry preparation for weld creation. The need for a solution that could streamline these processes, eliminate human errors, increase the accuracy of analysis data, and save valuable development time was evident.
|
|
|
![]() |
Optimized Architectural Design through Simulation: Zaha Hadid’s Volu Pavilion
Zaha Hadid Architects, a design atelier founded in 1979, has always been at the forefront of innovation, adopting theoretical guidance, systemic knowledge generation, and collaborative design. The company’s Computation and Design research group (co|de), initiated in 2007, aims to develop early-design methods that enable a directed search for physically, economically, and ergonomically feasible solutions within the vast universe of architectural possibilities provided by digital design and construction methods. For the 2015 Design Miami exhibition, the Zaha Hadid co|de team was commissioned to create a contemporary dining pavilion that combines computational design, lightweight engineering, and precision fabrication. The challenge was to create a unique dining environment, the Volu Pavilion, that was visually stunning, cost-efficient, and made use of advanced design and fabrication technologies.
|
|
|
![]() |
Duratec's Lightweight, Composite Carbon Fiber Street Racing Bicycle Frame Development
Duratec, a Czech company known for its innovative handmade bike frames, was faced with the challenge of developing and optimizing a lightweight composite racing bike frame. The main objective was to create a world-class performance bike frame by minimizing mass while maintaining or increasing stiffness and strength. The bike frame, being the backbone of a reliable bike, had to be made with high-strength, high-modularity fibers laminated with the best resin. The challenge was further complicated by the need to comply with European standard EN 14781, which specifies performance and safety measures requirements. The Computer Aided Engineering (CAE) department at Advanced Engineering, Altair’s channel partner in the Czech Republic, had to optimize layer stacking and the number of plies necessary to meet all structural targets.
|
|
|
![]() |
Griiip: Revolutionizing Motorsport with IoT and Altair's Startup Program
Griiip, an Israeli motorsport company, aimed to popularize motorsport in Israel and globally, outside the Formula 1 circuit. The company designed a new, fast, and professional race car, the G1, that combined efficiency in racing with a competitive purchase price and low running costs. However, the challenge was to create a race car that was both very strong and very light. All parts of the car needed to be optimized for loads, stress, weight, and endurance. The company also wanted to reduce the development time and the many iterations needed before getting to the final product and each component. Another challenge was to create a new and exciting viewing experience for motorsport fans.
|
|
|
![]() |
Sharda Motors: Leveraging Altair CAE Solution for Durability Analysis in Automobile Manufacturing
Sharda Motor Industries Limited (SMIL), a market leader in the manufacturing of exhaust systems and other automobile components, was faced with the challenge of reducing product design and development cycle time, effort, and cost. The company aimed to provide innovative products to clients by using simulation, automation, and optimization technologies in the development of exhaust components and systems. The challenge was to evaluate the durability of exhaust system components within a given time frame with high accuracy. They were expected to carry out finite element analysis and explain the results for typical exhaust system components. They also had to consider durability loads such as engine vibration loading and proving ground road-loads. Other durability issues associated with exhaust system components such as the muffler-pipe system, brackets, and hanger designs were required to be analyzed.
|
|
|
![]() |
Imperial Auto's Successful Validation of O-Ring Contact Pressure using Altair OptiStruct™ Solution
Imperial Auto, a leading manufacturer of ‘Fluid Transmission Products (FTPs), faced a significant challenge in their product design and development processes. The company, which supplies parts to some of the world's most reputed Engine, Automotive, and Off Highway and Farm Equipment OEMs, found it crucial to be innovative in their design processes, particularly in the manufacturing of fluid transmission pipes. The company was struggling to optimize fluid flow and minimize fluid loss. They also needed a secured, predictable, and confirmed process that would generate accurate results in their innovation efforts. One of the major challenges they faced was in the design and building of an assembly component where they had to check the 'O' ring leakage that could withstand required air pressure of 3 kg/ cm2. The team had to build several prototypes to confirm the 'O' ring leakage, a process that was unreliable and time-consuming.
|
|
|
![]() |
Altair Inspire Form: A Solution to Pragati Engineering's Sheet Metal Formability Challenges
Pragati Engineering, a leading press tool design and manufacturing company in India, faced a significant challenge in their product development process. The company was struggling with the formation of cracks and wrinkles in one of their products during the manufacturing process. The traditional method of trial and error that the team used was unable to predict these occurrences. This method forced the team to manually correct the dies and rebuild new tools, leading to unplanned iterations and physical die tryouts. This not only substantially increased the product development time and cost but also impacted delivery schedules. Furthermore, product quality and output accuracy were compromised due to this traditional method.
|
|
|
![]() |
Developing an Injury Threshold for Human Brain Concussion using IoT
The Bioengineering Department at Wayne State University in Detroit, Michigan, was faced with the challenge of developing a complete understanding of injury mechanisms for mild traumatic brain injury or concussions. The goal was to prevent or mitigate injury occurrence. Traumatic brain injuries constitute a significant portion of injury resulting from vehicle crash and sports collisions. The department aimed to develop strategies to prevent and mitigate these injuries, which can reduce the heavy emotional, economic, and social price of these injuries for future products. The department had previously developed head injury protection standards based on tolerance curves derived from animal concussion test acceleration results and cadaveric skull fractures. However, these standards could not account for the complex motion of the brain within a deformable skull, neglecting the contribution of angular head acceleration to injury causation and the directional sensitivity of the head.
|
|
|
![]() |
Subros Optimizes Product Designs with Altair HyperWorks, Reducing Simulation Time and Prototyping Costs
Subros Limited, a leading manufacturer of thermal products for automotive applications in India, faced significant challenges in meeting product delivery deadlines with agreed quality benchmarks. As a major supplier of AC units to various automotive segments, Subros had to continually upgrade their products to match the evolving designs of vehicles. The pressure of product development timelines was immense, as the launch time of vehicles was crucial for manufacturers. Subros initially used a CAE software tool for simulation to save time in the product development cycle. However, the software was not user-friendly, took a long time to simulate, and was prone to human errors, leading to further delays in product development and delivery. The team needed a robust, quick, reliable, and user-friendly simulation software product to overcome these issues.
|
|
|
![]() |
Optimizing Die-Casting Simulation and Design in Automotive Industry: A Case Study of U-Shin Automotive
U-Shin, a global automotive parts manufacturer, faced a challenge in die-casting simulation, result analysis, and design optimization for an automotive dead lock pin. The company specializes in automotive system appliances and mechatronics, producing a wide range of products including lock sets, electronic steering column locks, climate control panels, door latches, keyless entry, door handles, switches, power closure systems, and rear access modules. Many of these parts are manufactured with zamak, a zinc-based alloy. U-Shin's zamak foundry, one of the largest in Europe, produces approximately 10 tons of zamak per day. The company faced the challenge of optimizing over 100 tools per year, a process that is crucial for reducing time and cost, and for providing reliable solutions to customers in the automotive industry.
|
|
|
![]() |
Efficient Design Procedures for Wideband, Low-profile Antennas Using Altair FEKO Electromagnetic Simulation Technology
The Antenna Research Group (ARG) at the University of Colorado-Boulder was tasked with evaluating the bottom side of a vehicle as an alternative to more conventional antenna placement positions for mounting high-frequency VHF antenna systems. The challenge was to develop a procedure for evaluating the feasibility of bottom placement of HF-VHF antennas on military vehicles. Low profile concealed antennas are often desired for diverse applications across many military and commercial vehicle platforms. However, these tall antennas increase vehicles’ vertical clearance and constitute an easy to identify visual signature, which is undesirable. A vehicle underside can be considered as a viable alternative place for concealment, since it provides enough space to avoid extreme antenna miniaturization. The challenge was to assess and compare propagation losses for antennas at various vehicle positions.
|
|
|
![]() |
Boosting Efficiency and Economy in Injection Mold Tools with Topology Optimization, CFD Simulation and 3D Printing
The toolmaking industry, particularly in Europe and America, has been facing increased pricing pressure due to growing competition from Asian countries. This has led to a need for innovative and high-quality solutions that offer higher productivity and significantly lower costs per part compared to standard solutions. One of the key parameters for higher productivity is the cycle time, which can be optimized through conformal tempering. However, the challenge lies in reducing cycle time without compromising on the quality of the parts produced. The shorter the cycle time, the greater the number of components that can be manufactured within the same period, significantly increasing the facility’s overall productivity and economic viability.
|
|
|
![]() |
Altair SmartCore™ Delivers Data Driven Ecosystem to Make Pozuelo Del Alarcón a Smart City
The citizens of Pozuelo de Alarcón in Spain were seeking a cleaner, more efficient city. They aimed to protect the environment, decrease energy consumption, reduce CO2 emissions, and control expenses. The city faced challenges in financing and managing modern and efficient infrastructures. There was a need to improve the urban environment and the overall quality of life of the citizens, while keeping in mind environmental impact and sustainability. The city council of Pozuelo de Alarcón decided to set specific goals to become a Smart City. These goals included detecting and eliminating any excesses in water and electricity consumption, and controlling expenses. The overarching objective was the enhancement of the quality and performance of urban services to citizens’ lives through sustainability, community and growth.
|
|
|
![]() |
Optimizing Indoor Climate Control with Simulation and Optimization
Kampmann GmbH, a leading specialist in heating, cooling, air-conditioning, and integrated building automation, faced the challenge of reducing physical prototypes and gaining early insights into system performance via a virtual development approach. The company's flagship products, KaTherm HK, a trench unit, and KaDeck, a ceiling system for heating and cooling, had to be customized to the needs of each customer and individual environment. This often required individual design adjustments that had to be tested and approved on site. Before the introduction of simulation, the air-conditioning systems were physically tested, which resulted in longer development time and required greater effort. The challenge was to find a solution that would allow for early testing of functionality and special requirements prior to production, thereby reducing the need for physical prototypes and shortening the development cycle.
|
|
|
![]() |
Sujan CooperStandard's Success in Achieving Lightweight and Performance Targets with Altair
Sujan CooperStandard, a leading manufacturer of anti-vibration NVH products for automotive companies, faced significant challenges due to the stringent environmental norms and government policies related to pollution control. The automotive industry's pressure to reduce vehicle weight to minimize pollution and increase efficiency put the company under immense pressure to optimize designs and reduce the weight of products and components. Additionally, the fierce competition among automotive companies to launch new products quickly added to the pressure. Traditional methods of designing, developing, and testing products were no longer sufficient to meet the aggressive deadlines set by automotive companies. Sujan CooperStandard needed state-of-the-art software CAE solutions to reduce new product development time and cost while maintaining the product quality standards set by their clients.
|
|
|
![]() |
Optimizing Structural Strength for High-performance Bikes with IoT
Argon 18, a high-performance bike manufacturer, aimed to develop a bike that was stiffer, highly integrated, more aerodynamic, and provided greater efficiency. The challenge was to create a lightweight bike without compromising on structural strength and power. The weight of the product could be the defining difference in the competitive cycling industry. The team’s requirement was for the stiffest bike possible while getting the best aerodynamic results, as the rider would expend a huge amount of power during the track event. Making the bike more aerodynamic often results in making the shape thinner, hence the challenge was to make the frame stiff while at the same time balancing the structure‘s strength and the rigidity. An important aspect of the project was the development of a new aluminum stem to be used by Mr. Hansen in the Flying Lap event which is achieved by the fastest lap from the moving start. The stem would need to be seamlessly integrated to the bike frame, while being firmly fixed to the fork insert.
|
|
|
![]() |
Pioneering Real Wireless Power Delivery at Ossia Inc.: A Case Study
Ossia Inc., a company revolutionizing the mobility and connectivity of people and industries, faced a significant challenge in demonstrating the safe transmission of power wirelessly from 2-3 meters away. The company's patented wireless power Cota® technology, which is delivered much like WiFi, needed to be proven safe for humans and within the Federal Communications Commission (FCC) mandated Specific Absorption Rate (SAR) limit of 1.6 watts per kilogram. The technology was designed to provide real wireless power through the air and over a distance, even while the device is in motion. However, the safety of this technology was paramount, especially considering the potential effects on objects or living beings that could unknowingly walk into the path of the wireless power transmission.
|
|
|
![]() |
Innovative Sit-Ski Development through Composite Technology at National Composites Centre
The National Composites Centre (NCC), a non-profit UK facility, was tasked with the development of an advanced technology demonstrator, a Sit-ski, using composite materials. The Sit-ski, a device used for sports on mountain slopes by individuals with lower extremity limitations, required a design that would showcase the Centre's capabilities while also delivering performance improvements for the skiers. The challenge was to understand the performance of existing Sit-skis, build kinematic models of the suspension behavior, and design a system that would be lighter and more efficient. The design process needed to consider the use of composite structures at an architecture/system level, and the importance of cost and manufacturability in the product development process.
|
|
|
![]() |
Optimizing Antenna Layout in Passenger Car Glass for Improved Reception
Daimler, a German automotive technology leader, faced a challenge in optimizing the layout of FM, DAB, RKE & TV-antennas in multilayer windscreens. The integration of antennas in windscreens has become popular due to enhanced aesthetics and increased antenna surface area, which enables improved reception. However, the design of such antennas is complex, requiring the ability to analyze electromagnetic interactions between thinly layered dielectrics, thin embedded wires, and the surrounding vehicle body. The vehicle body forms part of the antenna in the frequency range of FM-, DAB- RKEand TV-antennas, leading to the need for the glass antennas to be adapted or redesigned for each car line and variant. Different glass types and configurations can change the impedances of the multiport antennas. Additionally, different antenna concepts are needed for different vehicle types.
|
|
|
![]() |
Driving Energy Efficiency: TUfast Eco Team's Success with HyperWorks
The TUfast Eco team from the Technical University Munich, consisting of about 30 students from various fields of study, was tasked with designing, developing, and manufacturing an energy-efficient vehicle to compete in various energy-efficiency contests, including the Shell Eco-marathon. The challenge was to create an entirely new vehicle each year, with no component of the previous year's vehicle allowed to be used. This was to ensure that the technical expertise and development approaches of previous years were passed on to the new team. One of the most important aspects in the development of an energy-efficient vehicle was to reduce the mass of the vehicle. Therefore, the team members were constantly looking for weight-saving potentials, especially when designing the suspension and chassis.
|
|