Upload Avatar (500 x 500)
Peida Zhan
pdzhan@gmail.com
Chinese, English
Zhejiang
Zhejiang Normal University
Psychology
  • Ph.D.: Beijing Normal University
  • Achievement: Zhejiang Province Leading Talent Training Program - Outstanding Young Talent (2020)
  • Achievement: Zhejiang Province Zhijiang Young Social Scientist (2021)
  • Achievement: National Scholarship for Doctoral Students (2016)
  • Achievement: National Public Study Abroad Scholarship (2016)
  • Achievement: Outstanding Graduate of Zhejiang Province (2014)
  • Achievement: National Scholarship for Master's Students (2013)
  • 2023.2 - Present: Zhejiang Normal University, School of Psychology, Party Committee Member
  • 2018.8 - 2023.1: Zhejiang Normal University, College of Teacher Education, Department of Psychology
  • Zhejiang Province Leading Talent Training Program - Outstanding Young Talent (2020)
  • Zhejiang Province Zhijiang Young Social Scientist (2021)
  • National Scholarship for Doctoral Students (2016)
  • National Public Study Abroad Scholarship (2016)
  • Outstanding Graduate of Zhejiang Province (2014)
  • National Scholarship for Master's Students (2013)
Latent Variable Modeling and Application of Psychological and Educational Measurement Data Based on Item Response Theory and Cognitive Diagnosis
  • Using a deep learning-based visual computational model to identify cognitive strategies in matrix reasoning, Wang, Z., Chen, Q., & Zhan, P., 2024
  • Assessing concept mapping competence using item expansion-based diagnostic classification analysis, Xia, S., Zhan, P., Chan, K., & Wang, L., 2023
  • Using a multi-strategy eye-tracking psychometric model to measure intelligence and identify cognitive strategy in Raven's advanced progressive matrices, Liu, Y., Zhan, P., Fu, Y., Chen, Q., Man, K., & Luo, Y., 2023
  • Joint modeling of action sequences and action time in computer-based interactive tasks, Fu, Y., Zhan, P., Chen, Q., & Jiao, H., 2023
  • Longitudinal joint modeling for assessing parallel interactive development of latent ability and processing speed using responses and response times, Zhan, P., Chen, Q., Wang, S., & Zhang, X., 2023
  • Diagnostic classification analysis of problem-solving competence using process data: An item expansion method, Zhan, P., & Qiao, X., 2022
  • Cognitive diagnosis modeling incorporating response times and fixation counts: Providing comprehensive feedback and accurate diagnosis, Zhan, P., Man, K., Wind, S. A., & Malone, J., 2022
  • Bridging models of biometric and psychometric assessment: A three-way joint modeling approach of item responses, response times and gaze fixation counts, Man, K., Harring, J. R., & Zhan, P., 2022
  • Joint modeling of compensatory multidimensional item responses and response times, Man, K., Harring, J. R., Jiao, H., & Zhan, P., 2019
  • Cognitive diagnosis modelling incorporating item response times, Zhan, P., Jiao, H., & Liao, D., 2018
  • 问题解决任务中行动序列的二分类建模:单/两参数行动序列模型, 付颜斌, 陈琦鹏, 詹沛达, 2023
  • 联合作答精度和作答时间的概率态认知诊断模型, 田亚淑, 詹沛达, 王立君, 2023
  • 纵向题目作答时间模型:对潜在加工速度的变化追踪, 陈琦鹏, 詹沛达, 2023
  • 引入眼动注视点的联合-交叉负载多模态认知诊断建模, 詹沛达, 2022
  • 基于过程数据的问题解决能力测量及数据分析方法, 刘耀辉, 徐慧颖, 陈琦鹏, 詹沛达, 2022
  • 多维对数正态作答时间模型:对潜在加工速度多维性的探究, 詹沛达, Jiao, H., Man, K., 2020
  • 计算机化多维测验中作答时间和作答精度数据的联合分析, 詹沛达, 2019
  • Development and validation of an academic involution tendency questionnaire based on factor analysis and network analysis, Gao, S., Yu, X., Yan, Y., & Zhan, P., 2024
  • Development and validation of two shortened anxiety sensitive index-3 scales based on item response theory, Luo, Y., Chen, Q., Chen, J., & Zhan, P., 2024
  • Can we differentiate a latent growth curve model from competitors? Evidence based on individual case residuals, Wei, D., Zhan, P., & Liu, H., 2024
  • Deterministic input, noisy mixed modeling for identifying coexisting condensation rules in cognitive diagnostic assessments, Zhan, P., 2023
  • Tracking ordinal development of skills with a longitudinal DINA model with polytomous attributes, Zhan, P., Liu, Y., Pan, Y., & Yu, Z., 2023
  • Refined learning tracking with a longitudinal probabilistic diagnostic model, Zhan, P., 2021
  • Editorial: Cognitive diagnostic assessment for learning, Zhan, P., Li, F., & Jiao, H., 2021
  • A longitudinal diagnostic model with hierarchical learning trajectories, Zhan, P., & He, K., 2021
  • Does diagnostic feedback promoting learning? Evidence from a longitudinal cognitive diagnostic assessment, Tang, F., & Zhan, P., 2021
  • A sequential higher order latent structural model for hierarchical attributes in cognitive diagnostic assessments, Zhan, P., Ma, W., Jiao, H., & Ding, S., 2020
  • A Markov estimation strategy for longitudinal learning diagnosis: Providing timely diagnostic feedback, Zhan, P., 2020
  • A partial mastery, higher-order latent structural model for polytomous attributes in cognitive diagnostic assessments, Zhan, P., Wang, W.-C., & Li, X., 2020
  • A longitudinal higher-order diagnostic classification model, Zhan, P., Jiao, H., Liao, D., & Li, F., 2019
  • Using JAGS for Bayesian cognitive diagnosis modeling: A tutorial, Zhan, P., Jiao, H., Man, K., & Wang, L., 2019
  • Bayesian DINA modeling incorporating within-item characteristics dependency, Zhan, P., Jiao, H., Liao, M., & Bian, Y., 2019
  • Probabilistic-input, noisy conjunctive models for cognitive diagnosis, Zhan, P., Wang, W.-C., Jiao, H., & Bian, Y., 2018
  • 纵向汉明距离判别法:对潜在属性的发展追踪, 刘耀辉, 陈琦鹏, 徐慧颖, 詹沛达, 2023
  • 多分属性的非参数诊断分类: 18种距离判别法的对比, 徐慧颖, 陈琦鹏, 刘耀辉, 詹沛达, 2023
  • 重参数化多分属性DINA模型的多级评分拓广——基于等级反应模型, 王立君, 赵少勇, 昌维, 唐芳, 詹沛达, 2022
  • 面向“为学习而测评”的纵向认知诊断模型, 詹沛达, 潘艳方, 李菲茗, 2021
  • 概率逻辑与模糊逻辑在精细化学习诊断中的对比研究, 詹沛达, 田亚淑, 于照辉, 李菲茗, 王立君, 2020
  • 基于认知诊断测评的个性化补救教学效果分析:以“一元一次方程”为例, 王立君, 唐芳, 詹沛达, 2020
  • 一种基于多阶认知诊断模型测评科学素养的方法, 詹沛达, 于照辉, 李菲茗, 王立君, 2019
  • 认知诊断中多分属性与二分属性的对比研究, 昌维, 詹沛达, 王立君, 2018
  • 使用题组反应模型缓解局部题目依赖性对多阶段测验的危害, 詹沛达, 高椿磊, 边玉芳, 罗照盛, 2017
  • 心理测量学模型在学习进阶中的应用: 理论、途径和突破, 高一珠, 陈孚, 辛涛, 詹沛达, 姜宇, 2017
  • 重参数化的多分属性诊断分类模型及其判准率影响因素, 詹
Item Response Theory Cognitive Diagnosis Latent Variable Modeling Psychological Measurement Educational Measurement Problem Solving Behavioral Process Data Psychometrics Data Analysis Model Construction

Contact us

Let's talk!
* Required
* Required
* Required
* Invalid email address
By submitting this form, you agree that IoT ONE may contact you with insights and marketing messaging.
No thanks, I don't want to receive any marketing emails from IoT ONE.
Submit

Thank you for your message!
We will contact you soon.