水务管理
概述
水务管理系统监控和收集用于存储和供水的基础设施的数据,以提高向客户供水的效率。基础设施老化意味着向客户供水的绝大多数网状网络对公用事业公司来说是不可见的。通过在水务基础设施上放置物联网传感器,公用事业运营商可以收集不同点之间的水流数据,以检测泄漏、短缺、质量水平和消耗水平。传感器还可以评估基础设施的状况,以实现预防性和预测性维护。
适用行业
- 设备与机械
- 矿业
适用功能
- 维护
- 质量保证
市场规模
商业观点
水质和泄漏监测的商业价值是什么?
- 通过节省成本获得额外收入:通过实时监控所有操作(包括泄漏、压力传感器和物联网软件分析)可以降低水管理成本,从而优化资产利用率、改进运营流程、节省能源成本、最大限度地减少人工干预、更低的维护成本和更低的基础设施成本
- 提高生产力:物联网允许实时控制更明智的业务决策、降低运营成本、优化流程和资源以及缩短服务时间
- 提高效率:水管理公司和协会可以使用实时运营控制来做出更明智的业务决策并降低运营成本
- 改进的操作过程控制和监控
- 优化和透明的资产利用:智能电表、传感器和连接显着改善所有资产的跟踪,提供对供应链的实时可见性
- 优化和透明的资产利用:通过使用传感器和连接,水务公司显着改善了对其所有资产的跟踪,获得对其供应链的实时可见性
- 用水统计和分析的实时知识,以实现更智能、更快速的决策:物联网分析可以消除数据不规则性,并提供未计费用水统计数据或决策过程中所需的任何相关统计数据的实时视图。
- 降低维护成本,同时提高网络运营的安全性和可靠性:能够定位所有资产,进行实时监控,控制和运行关键基础设施和机器的预防性维护,水务公司显着降低维护成本并最大限度地减少响应时间。
数据观点
为什么水管理系统中的实时数据分析很重要?
基于物联网的水管理系统利用实时数据分析的力量来:
- 有效地响应和避免紧急情况
- 重新获得收入
- 降低能源成本
- 减少紧急维修情况
-检测和管理水分流失
- 预测潜在的管道故障
- 管理水压
- 更好地分配维护和维修成本
案例研究.
Case Study
Eseye Pipe Leakage Detection
3.3 billion litres of water are lost through leaking pipes each day in the UK. As a result, water authorities face increasing demand to find innovative ways to monitor water flow within pipes. Currently, GSM data loggers are used to monitor water flow wirelessly and improve the efficiency of dealing with leaks. The big problem with GSM loggers is they use a network specific SIM, which means different SIMs are required for different locations due to network coverage.
Case Study
MONACO USES ALARM SOFTWARE TO PROTECT BEAUTIFUL MEDITERRANEAN WATERS
Monaco’s sanitation department uses alarm software to monitor its water treatment facilities. With connections to the waste water networks, the main lifting stations, three storm overflows, a storm tank, as well as waste water pre-treatment and final treatment operations, the department can rest assured that they know exactly what is – and what is not – being put back into the ocean on a regular basis.
Case Study
Beach & Water Reservoir Monitoring Platform
Catalan Water Agency is responsible for the overall management and supervision of the water reservoirs of Catalonia region. Part of its Big Data strategy was to find a monitoring system to surveil, manage and supervise in real-time the coastal areas (including swimming and non-swimming beaches), the water and its quality.