• >
  • >
  • >
  • >
  • >

实例探究.

添加案例

我们的案例数据库覆盖了全球物联网生态系统中的 22,657 家解决方案供应商。
您可以通过筛选条件进行快速浏览。

Download Excel
筛选条件
  • (6,653)
    • (2,601)
    • (2,127)
    • (945)
    • (676)
    • (312)
    • (229)
    • (194)
    • (163)
    • (141)
    • (135)
    • (114)
    • (100)
    • (53)
    • (28)
    • (2)
    • 查看全部
  • (5,642)
    • (2,469)
    • (1,692)
    • (826)
    • (497)
    • (441)
    • (353)
    • (84)
    • (1)
    • 查看全部
  • (5,571)
    • (2,178)
    • (1,766)
    • (643)
    • (425)
    • (422)
    • (416)
    • (291)
    • (225)
    • (213)
    • (213)
    • (48)
    • (8)
    • (8)
    • (7)
    • (1)
    • 查看全部
  • (5,247)
    • (2,179)
    • (1,715)
    • (1,321)
    • (250)
    • (10)
    • 查看全部
  • (2,881)
    • (1,448)
    • (574)
    • (376)
    • (210)
    • (183)
    • (174)
    • (158)
    • (154)
    • (152)
    • (80)
    • 查看全部
  • 查看全部 15 技术
  • (1,985)
  • (1,985)
  • (1,915)
  • (1,679)
  • (1,629)
  • (1,613)
  • (1,446)
  • (1,247)
  • (1,221)
  • (1,179)
  • (1,156)
  • (1,097)
  • (1,075)
  • (979)
  • (847)
  • (824)
  • (735)
  • (608)
  • (593)
  • (493)
  • (482)
  • (387)
  • (343)
  • (342)
  • (340)
  • (271)
  • (247)
  • (211)
  • (203)
  • (201)
  • (181)
  • (179)
  • (148)
  • (142)
  • (117)
  • (87)
  • (83)
  • (71)
  • (65)
  • (58)
  • (24)
  • (9)
  • 查看全部 42 行业
  • (8,728)
  • (4,742)
  • (3,618)
  • (3,233)
  • (2,947)
  • (1,692)
  • (1,498)
  • (1,332)
  • (1,315)
  • (1,032)
  • (892)
  • (362)
  • (337)
  • 查看全部 13 功能区
  • (3,304)
  • (2,787)
  • (2,603)
  • (2,006)
  • (1,630)
  • (1,625)
  • (1,561)
  • (1,369)
  • (1,043)
  • (732)
  • (725)
  • (711)
  • (690)
  • (647)
  • (601)
  • (574)
  • (521)
  • (486)
  • (472)
  • (470)
  • (434)
  • (416)
  • (410)
  • (364)
  • (356)
  • (352)
  • (340)
  • (315)
  • (305)
  • (302)
  • (271)
  • (257)
  • (252)
  • (242)
  • (237)
  • (235)
  • (229)
  • (229)
  • (222)
  • (214)
  • (188)
  • (183)
  • (176)
  • (167)
  • (147)
  • (145)
  • (143)
  • (142)
  • (142)
  • (139)
  • (137)
  • (133)
  • (130)
  • (121)
  • (120)
  • (119)
  • (119)
  • (119)
  • (115)
  • (105)
  • (99)
  • (98)
  • (96)
  • (96)
  • (91)
  • (90)
  • (86)
  • (85)
  • (84)
  • (83)
  • (81)
  • (80)
  • (69)
  • (67)
  • (65)
  • (62)
  • (62)
  • (61)
  • (58)
  • (58)
  • (55)
  • (53)
  • (53)
  • (50)
  • (49)
  • (48)
  • (44)
  • (41)
  • (40)
  • (40)
  • (38)
  • (37)
  • (33)
  • (33)
  • (31)
  • (29)
  • (29)
  • (28)
  • (27)
  • (23)
  • (22)
  • (22)
  • (19)
  • (19)
  • (18)
  • (18)
  • (17)
  • (17)
  • (17)
  • (17)
  • (15)
  • (13)
  • (12)
  • (12)
  • (12)
  • (11)
  • (11)
  • (8)
  • (6)
  • (5)
  • (4)
  • (4)
  • (3)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • 查看全部 129 用例
  • (13,581)
  • (5,296)
  • (4,272)
  • (3,520)
  • (2,856)
  • (1,288)
  • (1,239)
  • (360)
  • (10)
  • 查看全部 9 服务
  • (504)
  • (432)
  • (416)
  • (382)
  • (301)
  • (291)
  • (246)
  • (240)
  • (222)
  • (218)
  • (211)
  • (204)
  • (180)
  • (167)
  • (143)
  • (139)
  • (132)
  • (131)
  • (121)
  • (116)
  • (115)
  • (113)
  • (112)
  • (109)
  • (107)
  • (107)
  • (107)
  • (104)
  • (92)
  • (91)
  • (89)
  • (88)
  • (86)
  • (85)
  • (85)
  • (84)
  • (80)
  • (78)
  • (77)
  • (75)
  • (75)
  • (73)
  • (72)
  • (72)
  • (72)
  • (69)
  • (69)
  • (68)
  • (67)
  • (67)
  • (67)
  • (65)
  • (65)
  • (64)
  • (64)
  • (62)
  • (60)
  • (58)
  • (58)
  • (56)
  • (55)
  • (55)
  • (54)
  • (54)
  • (54)
  • (53)
  • (53)
  • (53)
  • (53)
  • (53)
  • (52)
  • (52)
  • (52)
  • (52)
  • (51)
  • (51)
  • (51)
  • (50)
  • (50)
  • (48)
  • (48)
  • (47)
  • (47)
  • (46)
  • (46)
  • (46)
  • (45)
  • (43)
  • (43)
  • (43)
  • (42)
  • (42)
  • (41)
  • (41)
  • (40)
  • (40)
  • (40)
  • (40)
  • (39)
  • (38)
  • (38)
  • (37)
  • (36)
  • (36)
  • (35)
  • (35)
  • (34)
  • (33)
  • (33)
  • (32)
  • (32)
  • (32)
  • (32)
  • (32)
  • (32)
  • (31)
  • (31)
  • (31)
  • (31)
  • (31)
  • (31)
  • (30)
  • (30)
  • (30)
  • (30)
  • (30)
  • (30)
  • (30)
  • (30)
  • (29)
  • (29)
  • (29)
  • (28)
  • (28)
  • (28)
  • (28)
  • (27)
  • (27)
  • (27)
  • (26)
  • (26)
  • (26)
  • (26)
  • (25)
  • (25)
  • (25)
  • (25)
  • (25)
  • (25)
  • (24)
  • (24)
  • (24)
  • (24)
  • (24)
  • (24)
  • (24)
  • (24)
  • (23)
  • (23)
  • (23)
  • (23)
  • (23)
  • (23)
  • (22)
  • (22)
  • (22)
  • (21)
  • (21)
  • (21)
  • (21)
  • (21)
  • (20)
  • (20)
  • (20)
  • (20)
  • (20)
  • (19)
  • (19)
  • (19)
  • (19)
  • (19)
  • (19)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (18)
  • (17)
  • (17)
  • (17)
  • (17)
  • (17)
  • (17)
  • (17)
  • (17)
  • (17)
  • (17)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (16)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (15)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (14)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (13)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (12)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (11)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (10)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (9)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (8)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (7)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (6)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (5)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (4)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (3)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (2)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • 查看全部 1083 供应商
Selected Filters
22,657 实例探究
排序方式:
Montgomery County Government Uses Azure AI and Zammo.ai for COVID-19 Vaccination Program - Microsoft Azure Industrial IoT Case Study
Montgomery County Government Uses Azure AI and Zammo.ai for COVID-19 Vaccination Program
Montgomery County Government in Maryland faced a significant challenge during the COVID-19 pandemic as it sought to support the increased demand for services, particularly in managing the COVID-19 vaccination registration process. The county needed an immediate solution to relieve the pressure on its human contact center agents and deliver better engagement and service delivery for its MC311 Customer Service Center and Department of Health and Human Services (HHS). The goal was to offer residents a fast, easy, comprehensive, and equitable COVID-19 vaccination registration process. The challenge was compounded by the need to quickly augment its contact centers with AI capabilities to handle the surge in demand without requiring extensive developer expertise.
下载PDF
FortisAlberta Prioritizes Worker Safety on Power Platform, Boosting Productivity and Earning Key Tech Award - Microsoft Azure Industrial IoT Case Study
FortisAlberta Prioritizes Worker Safety on Power Platform, Boosting Productivity and Earning Key Tech Award
With 350 front-line employees working on power lines across the province, injury prevention is an enormous priority for FortisAlberta. Thus, before any work commences at a site, an injury prevention plan (IPP) must be created to identify the risks and hazards staff need to be aware of and the actions they must take to stay safe. This plan must remain dynamic throughout the lifecycle of the project site, as any change to the job could introduce new risks, requiring new plans of action. Before adopting a digital approach, FortisAlberta used a paper-based system to complete and manage IPPs. Supervisors had to fill out paper forms and send them by email to the Safety department within 30 days of project initiation. Recordings of meetings were captured on handheld audio recorders and cross-referenced with the paper forms during random periodic checks or following an incident. To share the IPPs, employees took photos or made photocopies of the completed forms and sent them for site auditing. This made it challenging to pull information together in time to be reviewed at team safety meetings. The paper-based process created several challenges. Handwritten IPPs were not always legible, which made it difficult to record accurate information. The check boxes on the IPP form did not accurately reflect the job’s scope of work, its roles and responsibilities, or its hazards and barriers. The paper forms required double entry, necessitating additional administrative work. And it could take as long as two weeks before forms got to the head office, if they didn’t get lost along the way.
下载PDF
San Francisco Municipal Transportation Agency boosts citizen services with Microsoft Azure - Microsoft Azure Industrial IoT Case Study
San Francisco Municipal Transportation Agency boosts citizen services with Microsoft Azure
The San Francisco Municipal Transportation Agency (SFMTA) faced significant challenges in managing and analyzing the vast amounts of data generated by its operations. The agency's traditional reliance on relational databases and middleware was proving inefficient and resource-intensive. The existing systems required extensive manual processing, such as pulling data from CSV files into Excel for analysis, which was time-consuming and labor-intensive. Additionally, the on-premises infrastructure demanded costly engineering hours for maintenance and upgrades, making it difficult to scale and adapt to the growing data needs. The SFMTA recognized the need for a centralized data management solution that could streamline processes, reduce administrative bottlenecks, and enable data-driven decision-making to improve transportation services and optimize revenue.
下载PDF
Jacksonville University Creates a Data-Driven Culture with Power BI - Microsoft Azure Industrial IoT Case Study
Jacksonville University Creates a Data-Driven Culture with Power BI
Five years ago, Jacksonville University (JU) faced significant challenges in accessing and utilizing data effectively. The process was cumbersome, requiring leadership to fill out forms and wait for the analytics department to provide static reports. This reactive approach hindered timely decision-making and limited the ability to leverage data for strategic purposes. The arrival of President Tim Cost in 2013, with his extensive experience in Fortune 500 companies, brought a new expectation for technology and data accessibility. The need for a more dynamic and proactive data culture became evident, prompting JU to seek a solution that would democratize data access and empower leaders, faculty, and staff to make informed decisions. The existing data processes were siloed, with different departments owning separate data sets, leading to inconsistencies and inefficiencies. Meetings with deans often resulted in conflicting data interpretations, as each department relied on its own data sources. This lack of a unified and authoritative data set hindered meaningful discussions and strategic planning. The challenge was to create a centralized and accessible data platform that would streamline data access, improve data accuracy, and foster a culture of data-driven decision-making across the university.
下载PDF
Sustainable Digital Transformation at Rolls-Royce with Microsoft Azure and AI - Microsoft Azure Industrial IoT Case Study
Sustainable Digital Transformation at Rolls-Royce with Microsoft Azure and AI
Rolls-Royce, a leading British brand in the manufacturing industry, is facing the challenge of transitioning to a net zero carbon future. The company recognizes the need to decarbonize rapidly to ensure its longevity and continue delivering excellence in its engine manufacturing. The challenge is compounded by the vast amount of flight data that needs to be processed and analyzed to optimize carbon output. The existing on-premises infrastructure was insufficient to handle the data volume and processing power required for this task.
下载PDF
KFH Accelerates Digital Transformation with Microsoft Teams and Cloud Solutions - Microsoft Azure Industrial IoT Case Study
KFH Accelerates Digital Transformation with Microsoft Teams and Cloud Solutions
Kinleigh Folkard & Hayward (KFH) faced the challenge of modernizing their IT infrastructure while ensuring robust security and mobility. With sensitive information across ten business divisions, the leadership was initially hesitant about cloud adoption. However, by 2018, their on-premises infrastructure was nearing end-of-life, prompting a reevaluation. The COVID-19 pandemic further disrupted their plans, necessitating a rapid pivot to remote work solutions. The need for effective communication and collaboration tools became paramount as lockdowns were announced, pushing KFH to fast-track their digital transformation efforts.
下载PDF
Analytics SaaS Provider Scales Instantly, Delivers Faster and More Cost-Efficient Service to Customers - Microsoft Azure Industrial IoT Case Study
Analytics SaaS Provider Scales Instantly, Delivers Faster and More Cost-Efficient Service to Customers
Most businesses generate a lot of data, but that data isn’t valuable for decision making if it’s not structured and analyzed. Analytics aren’t as effective if they are slow and expensive to produce. Inlitix was founded to offer a timely, easy-to-use, affordable BI as a service for small and medium-size businesses. They focused on interoperability across different ERP systems with different datasets and offered out-of-the-box reporting and analytics solutions. However, Inlitix found that it only needed more compute power at certain times, such as when it spins up development and QA environments or when production data is refreshed. It didn’t make sense to pay for a constant high level of compute resources during the times when they weren’t needed. To minimize the company’s compute requirements and maintain affordability, staff would manually adjust and optimize queries, which took time away from focusing on more strategic tasks and adding value to their application. Inlitix wanted to optimize the balance between cost and performance of its databases while ensuring it could quickly process data from customer ERP systems and refresh Power BI reports more frequently.
下载PDF
Intesa Sanpaolo Enhances Real Estate Operations and Reduces Carbon Footprint with Azure Solutions - Microsoft Azure Industrial IoT Case Study
Intesa Sanpaolo Enhances Real Estate Operations and Reduces Carbon Footprint with Azure Solutions
Intesa Sanpaolo Group, Italy's leading banking group, faced the challenge of improving its real estate operations and facility management to cut waste and reduce its environmental footprint. The bank manages thousands of buildings and is one of the largest real estate owners in Italy, with more than 40 million square feet of assets. The challenge was to reduce energy consumption, improve comfort, and optimize operational efficiency across its vast real estate portfolio. The bank needed a solution that would provide real-time visibility into HVAC and other systems in its buildings, enabling data-driven actions to be taken. The complexity of the bank's environment required a robust and secure solution, as data protection is a critical concern for the bank.
下载PDF
West Marine's Transformation: Elevating Customer Data Insights with PK and Alteryx - Alteryx Industrial IoT Case Study
West Marine 通过 Alteryx 增强客户数据洞察力
West Marine 在管理和分析客户数据方面面临挑战。他们依赖第三方供应商和外部数据库,这些数据库成本高昂且不互连。他们希望收回对客户数据的控制权并充满信心地信任它。
下载PDF
Revolutionizing Container Supply Chain Processes: A Case Study on GHD and Alteryx - Alteryx Industrial IoT Case Study
使用 Alteryx 改进容器供应链流程:案例研究
每五年,澳大利亚墨尔本港(PoM)就需要跟踪所有进出的集装箱。了解货运流向对于确保正确的基础设施、工业用地、规划控制和政策设置到位以支持高效的供应链至关重要。 PoM 利用超过 57 个独立组来跟踪 60 多种不同格式的数据。此过程通常需要数百小时的手动时间和资源,而且从历史上看,预测率低于 30%。此外,直到最近他们才能够成功完成比赛分析。
下载PDF
LATAM Private Bank Streamlines Operations and Saves Time with Alteryx - Alteryx Industrial IoT Case Study
拉丁美洲银行利用 Alteryx 节省时间并提高效率
一家拉丁美洲银行的运营部门面临手动数据处理的挑战,包括数据捕获、整合、处理和输出。他们还处理非结构化数据和重复的错误和工作。
下载PDF
Automated Reconciliation Tool for End User Billing: A Case Study - Alteryx Industrial IoT Case Study
用于最终用户计费的自动对账工具:转变计费操作
由于迟到的费率变化、手动错误和错误编码调整,计费系统会在承保历史记录和现金分配数据之间产生差异。数据源和业务规则的复杂性使问题进一步复杂化。通过报告来发现问题既昂贵又耗时。
下载PDF
Revolutionizing Natural Disaster Response with IoT - Alteryx Industrial IoT Case Study
通过物联网和数据分析彻底改变自然灾害响应
自 1980 年以来,美国已发生 246 起严重天气事件,每次造成的损失超过 10 亿美元。在此期间,天气事件造成的总损失总计达 8,460 亿美元,造成 5,500 多人丧生。面临的挑战是向受自然灾害影响的医疗保健公司成员提供及时的支持和沟通,确保获得保险、药物和医疗设备。
下载PDF
Lilly's Transformation: Collaborative Engineering with Designer Cloud - Alteryx Industrial IoT Case Study
礼来公司 (Lilly) 通过 Designer Cloud 实现协同工程
Lilly 拥有复杂的手动流程,使用 SQL、MS Access 和 XLS 在 S3 中集成 20 个不同的数据集以进行一项研究。由于孤立的流程,他们每天手动执行 8 次 SQL 查询来更新报告和仪表板,而协作程度极低。行动号召是简化和自动化下游数据流,以支持业务分析师,同时控制所有临床站点的成本和效率。
下载PDF
Digital Transformation and Automation of Internal Auditing at Merlin Properties with Alteryx - Alteryx Industrial IoT Case Study
Merlin Properties 利用 Alteryx 实现内部审计转型和自动化
由于资产数量众多且数据复杂,Merlin Properties 需要一种有效分析和审计其财务和非财务信息的方法。
下载PDF
Digital Transformation of Analytic Processes at the US Census Bureau - Alteryx Industrial IoT Case Study
美国人口普查局分析流程的数字化转型
美国人口普查局依靠手动流程和过时的工具来收集、分析和报告数据,导致成本高昂且效率低下。
下载PDF
Predicting and Trading on the Cryptocurrency Markets using Alteryx - Alteryx Industrial IoT Case Study
使用 Alteryx 进行自动化加密货币交易和预测
面临的挑战是创建一个完全自动化的解决方案,可以从数据库中提取最新数据,生成预测模型,并在实时加密货币市场上执行真实交易。
下载PDF
The Russell Family Foundation's Journey to Net-Zero Carbon Emissions - Carbon Direct Industrial IoT Case Study
促进气候融资:罗素家族基金会的净零之旅
罗素家族基金会的目标是到 2030 年实现净零投资组合,需要计算其碳足迹并制定临时减排目标。
下载PDF
Revamping Health and Safety Processes: A Case Study of AB Agri and Sypol - EcoOnline Industrial IoT Case Study
改进健康和安全流程:AB Agri 凭借 Sypol CMS 取得成功
由于完成 COSHH 评估非常耗时且需要编写的评估积压,AB Agri 需要改进其健康和安全流程。
下载PDF
E-CO Energi's Transformation with EcoOnline's IoT Solution - EcoOnline Industrial IoT Case Study
E-CO Energi 利用 EcoOnline 的软件改进化学品管理
跟踪化学品并确保遵守法律要求对 E-CO Energi 来说是一项挑战。他们必须手动追踪活页夹中的化学物质,并努力获取最新的安全数据表。
下载PDF
Streamlining SDS Management with EcoOnline: A Case Study on Ekornes - EcoOnline Industrial IoT Case Study
利用 EcoOnline 简化 SDS 管理:Ekornes 案例研究
使用纸质系统后,Ekornes 发现很难跟上法规并保持合规性。安全数据表存储在多个文件夹中,因此很难找到正确的文档并访问更新的表。这也使得制定有效的风险评估和实施控制措施以减少潜在风险变得具有挑战性。
下载PDF
Digital Transformation of Incident Reporting: A Case Study of Glasgow City Council - EcoOnline Industrial IoT Case Study
转变事件报告:格拉斯哥市议会的数字优先解决方案
格拉斯哥市议会在管理事故和事件的纸质方法方面面临挑战,导致报告延迟和信息丢失。
下载PDF
Mitie's Transformation: Enhancing Incident Reporting and Reducing Injury Time with EcoOnline - EcoOnline Industrial IoT Case Study
Mitie 通过 EcoOnline 将事故报告数量提高了 140%,并将因伤害损失的时间减少了 14%
Mitie 在实施能够满足各行业需求的 EHS 解决方案时面临挑战,缺乏对安全文化建设的参与,以及衡量安全 KPI 的困难。
下载PDF
Porsgrunn Local Authority: A Case Study on Reducing Chemical Use and Greenhouse Gas Emissions - EcoOnline Industrial IoT Case Study
Porsgrunn 地方当局:实现化学品减少和成本节约
Porsgrunn 地方当局面临着减少本市化学品使用以改善环境和员工安全的挑战。
下载PDF
Digital Transformation of Incident Reporting at The Prince's Trust - EcoOnline Industrial IoT Case Study
转变事件报告和员工信心:王子信托案例研究
王子信托基金拥有过时的纸质报告系统,导致工作重复、工作方法冗长以及无法有效审查数据。利益相关者往往认为,当他们完成纸质表格后,他们的责任就结束了,而慈善机构则努力用有形数据来证明其工作的价值。
下载PDF
Unilabs' Efficiency Improvement with EcoOnline's Chemical Management Software - EcoOnline Industrial IoT Case Study
EcoOnline 的化学品管理软件如何帮助 Unilabs 提高安全性和效率
在 Unilabs 开始使用 EcoOnline 之前,我们花费了大量的工作来定期更新安全数据表至最新版本。对我们使用的化学品进行风险评估对我们来说是一个巨大的挑战。我们也很难全面了解我们的化学品处理情况。
下载PDF
United Living: Enhancing Safety Culture through IoT - EcoOnline Industrial IoT Case Study
转变安全文化:United Living 的更安全项目之旅
United Living 的险情报告数量较少,表明缺乏危险意识和风险管理。
下载PDF
Ubisoft's Strategic Approach to Climate Contributions - Sweep Industrial IoT Case Study
最大限度地发挥贡献的影响:育碧的气候项目方法
对于公司来说,支持气候项目并不是一件简单的任务。在建立与气候计划相一致的有影响力的贡献组合时存在许多障碍。碳市场不仅规模不断扩大,而且日益复杂。有许多不同类型的项目可供选择,交易者和中介参与者可以处理,以及新的和替代认证标准。关于如何将贡献适当地纳入公司的气候计划并使其与企业价值观保持一致,也存在很多困惑。因此,它可能会阻碍某些人并阻止其他人制定连贯的战略并支持将产生真正影响的项目。
下载PDF
Kainos's Ambitious Climate Action: A Case Study in IoT and Sustainability - Watershed Industrial IoT Case Study
凯诺斯积极的气候计划:从理解到行动
Kainos 在了解和减少碳足迹方面面临挑战,特别是与供应商的间接排放有关的挑战。他们还希望制定一项雄心勃勃的减排计划,以帮助将全球气温保持在 +1.5°C 的安全区内。
下载PDF
Klarna's Sustainable Shopping: A Case Study on Carbon-Neutral Operations - Watershed Industrial IoT Case Study
Klarna 迈向可持续未来的旅程
Klarna 面临的挑战是减少其运营和供应链的碳足迹,以支持健康的地球。
下载PDF

联系我们

欢迎与我们交流!
* Required
* Required
* Required
* Invalid email address
提交此表单,即表示您同意 Asia Growth Partners 可以与您联系并分享洞察和营销信息。
不,谢谢,我不想收到来自 Asia Growth Partners 的任何营销电子邮件。
提交

感谢您的信息!
我们会很快与你取得联系。