公司规模
Large Corporate
地区
- America
国家
- United States
产品
- Domo
技术栈
- Data Visualization
- Data Integration
实施规模
- Enterprise-wide Deployment
影响指标
- Productivity Improvements
- Digital Expertise
技术
- 应用基础设施与中间件 - 数据可视化
适用行业
- 汽车
适用功能
- 商业运营
服务
- 数据科学服务
关于客户
Turo 是一家总部位于旧金山的科技公司,运营着全球最大的点对点汽车共享市场。该公司将需要汽车的人与那些原本会闲置的车主联系起来。自 2012 年在全国推出以来,Turo 经历了爆炸式增长,在 1,000 多个城市和美国所有 50 个州都可以租用汽车。该公司通过为车主提供一个平台,让他们可以在不使用汽车时将其变现,从而彻底改变个人出行方式。
挑战
Turo 是全球最大的点对点汽车共享市场,在理解其大量数据方面面临挑战。手动报告流程繁琐且缓慢,阻碍了公司做出快速、数据驱动的决策的能力。此外,信息不是实时传递的,这进一步延迟了决策过程。该公司需要一种可以自动化其报告流程并提供实时见解的解决方案。
解决方案
Turo 实施了 Domo,这是一个为营销、产品和客户数据提供执行仪表板的平台。该解决方案支持敏捷、数据驱动的业务决策,并自动执行关键 BI 报告,从而节省了一半的 FTE。Domo 负责所有不同数据源的所有连接,其工程师弄清楚如何使其工作并自动提取数据。该平台的设计易于使用,允许用户轻松访问他们想要查看的数据,而无需通过中间人或费尽周折。
运营影响
数量效益
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
相关案例.
Case Study
Integral Plant Maintenance
Mercedes-Benz and his partner GAZ chose Siemens to be its maintenance partner at a new engine plant in Yaroslavl, Russia. The new plant offers a capacity to manufacture diesel engines for the Russian market, for locally produced Sprinter Classic. In addition to engines for the local market, the Yaroslavl plant will also produce spare parts. Mercedes-Benz Russia and his partner needed a service partner in order to ensure the operation of these lines in a maintenance partnership arrangement. The challenges included coordinating the entire maintenance management operation, in particular inspections, corrective and predictive maintenance activities, and the optimizing spare parts management. Siemens developed a customized maintenance solution that includes all electronic and mechanical maintenance activities (Integral Plant Maintenance).
Case Study
Monitoring of Pressure Pumps in Automotive Industry
A large German/American producer of auto parts uses high-pressure pumps to deburr machined parts as a part of its production and quality check process. They decided to monitor these pumps to make sure they work properly and that they can see any indications leading to a potential failure before it affects their process.